44
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding of thermal behaviour in keyhole plasma arc welding process through numerical modelling–an overview

, &
Pages 395-408 | Received 01 Feb 2024, Accepted 22 Apr 2024, Published online: 14 May 2024

References

  • Daha MA, Nassef GA, Abdallah IA. Numerical modeling of heat transfer and fluid flow in keyhole plasma arc welding of dissimilar steel joints. Int J Eng Sci Technol. 2012;4:506–518.
  • Li Y, Wang L, Wu C. A novel unified model of keyhole plasma arc welding. Int J Heat Mass Transf [Internet]. 2019;133:885–894. Available from doi: 10.1016/j.ijheatmasstransfer.2018.12.130
  • Li Y, Feng YH, Zhang XX, et al. An improved simulation of heat transfer and fluid flow in plasma arc welding with modified heat source model. Int J Therm Sci [Internet]. 2013;64:93–104. Available from doi: 10.1016/j.ijthermalsci.2012.08.007
  • Fan HG, Kovacevic R. Keyhole formation and ­collapse in plasma arc welding. J. Phys. D: appl. Phys. 1999;32(22):2902–2909. doi: 10.1088/0022-3727/32/22/312
  • Fuerschbach PW, Knorovsky GA. A study of melting efficiency in plasma arc and gas tungsten arc welding: a method for selecting optimal weld schedules to minimize net heat input is derived from calorimetric measurements. Weld J. 1991;70:287–297.
  • Martikainen JK, Moisio TJI. Investigation of the effect of welding parameters on weld quality of plasma arc keyhole welding of structural steels. Weld J. 1993;72:329.
  • Vilkas EP. Plasma arc welding of exhaust pipe system components. Weld J. 1991;70:49–52.
  • Irving B. Why aren’t airplanes welded? Weld J. 1997;76:31–41.
  • Irving B. Plasma arc welding takes on the advanced solid rocket motor. Weld J. 1992;71:49.
  • Nunes AC, Jr BaylessJrEO, JonesIIICS, et al. Variable polarity plasma arc welding on the space shuttle external tank. Weld J. 1984;63:1–44.
  • Keanini RG, Rubinsky B. Plasma-arc welding under normal and zero gravity. Weld J. 1990;69:41–50.
  • Huu MN, Van Nguyen A, Van Nguyen T, et al. Material flow behavior on weld Pool surface in plasma arcwelding process considering dominant driving forces. Appl Sci. 2020;10.
  • Metcalfe JC, Quigley MBC. Heat transfer in plasma-arc welding. Weld Res Abroad. 1975;54(3):99–104.
  • Li TQ, Wu CS. Numerical simulation of plasma arc welding with keyhole-dependent heat source and arc pressure distribution. Int J Adv Manuf Technol. 2015;78(1-4):593–602. doi: 10.1007/s00170-014-6685-7
  • Liu ZM, Cui SL, Luo Z, et al. Plasma arc welding: process variants and its recent developments of sensing, controlling and modeling. J Manuf Process [Internet]. 2016;23:315–327. Available from doi: 10.1016/j.jmapro.2016.04.004
  • Li Y, Feng Y, Li Y, et al. Plasma arc and weld Pool coupled modeling of transport phenomena in keyhole welding. Int J Heat Mass Transf. 2016;92:628–638. doi: 10.1016/j.ijheatmasstransfer.2015.09.016
  • Li Y, Feng Y, Zhang X, et al. Energy propagation in plasma arc welding with keyhole tracking. Energy. 2014;64:1044–1056. doi: 10.1016/j.energy.2013.11.018
  • Tseng K, Chen Y, Chen Y. Micro plasma arc welding of AM 350 precipitation hardening alloys. AMM. 2011;121-126:2681–2685. doi: 10.4028/www.scientific.net/AMM.121-126.2681
  • Sahoo A, Tripathy S. Development in plasma arc welding process: a review. Mater Today Proc [Internet]. 2021;41:363–368. Available from: doi: 10.1016/j.matpr.2020.09.562
  • Hsu YF, Rubinsky B. Two-dimensional heat transfer study on the keyhole plasma arc welding process. Int J Heat Mass Transf. 1988;31(7):1409–1421. doi: 10.1016/0017-9310(88)90250-5
  • Jian X, Wu CS. Numerical analysis of the coupled arc-weld Pool-keyhole behaviors in stationary plasma arc welding. Int J Heat Mass Transf [Internet]. 2015;84:839–847. Available from doi: 10.1016/j.ijheatmasstransfer.2015.01.069
  • Fortain JM. Plasma welding evolution & challenges. IIW Doc. 2008;12:1–11.
  • Wu CS, Wang L, Ren WJ, et al. Plasma arc welding: process, sensing, control and modeling. J Manuf Process. 2013;16(1):74–85. doi: 10.1016/j.jmapro.2013.06.004
  • Dhinakaran V, Shanmugam NS, Sankaranarayanasamy K. Some studies on temperature field during plasma arc welding of thin titanium alloy sheets using parabolic gaussian heat source model. Proc Inst Mech Eng Part C J Mech Eng Sci. 2017;231(4):695–711. doi: 10.1177/0954406215623574
  • Abedifard R, Sadodin S. Numerical modeling of non-Fourier heat transfer and fluid flow during plasma arc welding of AISI 304 stainless steel. Numer Heat Transf Part A Appl. 2016;69(3):311–326. doi: 10.1080/10407782.2015.1080576
  • Wu D, Van Nguyen A, Tashiro S, et al. Elucidation of the weld Pool convection and keyhole formation ­mechanism in the keyhole plasma arc welding. Int J Heat Mass Transf [Internet]. 2019;131:920–931. Available from: doi: 10.1016/j.ijheatmasstransfer.2018.11.108
  • Pan J, Hu S, Yang L, et al. Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten–plasma–anode model. Acta Mater [Internet]. 2016;118:221–229. Available from: doi: 10.1016/j.actamat.2016.07.046
  • Dhinakaran V, Siva Shanmugam N, Sankaranarayanasamy K, et al. Analytical and numerical investigations of weld bead shape in plasma arc welding of thin Ti-6al-4v sheets. Simulation. 2017;93(12):1123–1138. doi: 10.1177/0037549717726580
  • Li TQ, Wu CS, Feng YH, et al. Modeling of the thermal fluid flow and keyhole shape in stationary plasma arc welding. Int J Heat Fluid Flow. 2012;34:117–125. doi: 10.1016/j.ijheatfluidflow.2011.12.004
  • Sun J, Wu CS, Feng Y. Modeling the transient heat transfer for the controlled pulse key-holing process in plasma arc welding. Int J Therm Sci. 2011;50(9):1664–1671. doi: 10.1016/j.ijthermalsci.2011.04.008
  • Cai J, Feng Y, Zhou J, et al. Numerical analysis of weld Pool behaviors in plasma arc welding with the lattice boltzmann method. Int J Therm Sci [Internet]. 2018;124:447–458. Available from doi: 10.1016/j.ijthermalsci.2017.10.026
  • Feng Y, Zhou J, Cai J, et al. A 3-D lattice boltzmann analysis of weld Pool dynamic behaviors in plasma arc welding. Appl Therm Eng. 2018;139:623–635. doi: 10.1016/j.applthermaleng.2018.05.051
  • Dowden J, Kapadia P. Plasma arc welding: a mathematical model of the arc. J. Phys. D: appl. Phys. 1994;27(5):902–910. doi: 10.1088/0022-3727/27/5/004
  • Schnick M, Füssel U, Spille-Kohoff A. Numerical ­investigations of the influence of design parameters, gas composition and electric current in plasma arc welding (PAW). Weld World. 2010;54(3-4):R87–R96. doi: 10.1007/BF03263492
  • Zhang T, Wu CS, Feng Y. Numerical analysis of heat transfer and fluid flow in keyhole plasma arc welding. Numer Heat Transf Part A Appl. 2011;60(8):685–698. doi: 10.1080/10407782.2011.616851
  • Wu CS, Zhang T, Feng YH. Numerical analysis of the heat and fluid flow in a weld Pool with a dynamic keyhole. Int J Heat Fluid Flow. 2013;40:186–197. doi: 10.1016/j.ijheatfluidflow.2013.01.006
  • Pan JJ, Yang LJ, Hu SS, et al. Numerical analysis of keyhole formation and collapse in variable polarity plasma arc welding. Int J Heat Mass Transf. 2017;109:1218–1228. doi: 10.1016/j.ijheatmasstransfer.2016.12.089
  • Wu D, Tashiro S, Hua X, et al. Analysis of the ­energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld Pool model. Int J Heat Mass Transf [Internet]. 2019;141:604–614. Available from doi: 10.1016/j.ijheatmasstransfer.2019.07.008
  • Quigley MBC, Richards PH, Swift-Hook DT, et al. Heat flow to the workpiece from a TIG welding arc. J. Phys. D: appl. Phys. 1973;6(18):2250–2258. doi: 10.1088/0022-3727/6/18/310
  • Rosenthal D. Mathematical theory of heat distribution during welding and cutting. Weld J. 1941;20:220s–234s.
  • Rykalin NN. Calculation of heat processes in welding. 42nd Annu Meet Am Weld Soc. 1960:1–64.
  • Pavelic V. Experimental and computed temperature histories in gas tungsten arc welding of thin plates. Weld J Res Suppl. 1969;48:296–305.
  • Westby O. Temperature distribution in the workpiece by WeldingDept. of Metallurgy and Metals Working, The Technical Univ. of Norway. PhD Dissertation; 1968.
  • Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Trans B. 1984;15(2):299–305. doi: 10.1007/BF02667333
  • Wu CS, Wang HG, Zhang YM. A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile. Weld J (Miami, Fla). 2006;85:284s–291s.
  • Wu CS, Hu QX, Gao JQ. An adaptive heat source model for finite-element analysis of keyhole plasma arc welding. Comput Mater Sci [Internet]. 2009;46(1):167–172. Available from doi: 10.1016/j.commatsci.2009.02.018
  • Mondal AK, Kumar B, Bag S, et al. Development of avocado shape heat source model for finite element based heat transfer analysis of high-velocity arc welding process. Int J Therm Sci. 2021;166:107005. Int J Therm Sci [Internet]. Available from doi: 10.1016/j.ijthermalsci.2021.107005
  • Li Y, Feng Y, Zhang X, et al. An evolutionary keyhole-mode heat transfer model in continuous plasma arc welding. Int J Heat Mass Transf [Internet]. 2018;117:1188–1198. Available from doi: 10.1016/j.ijheatmasstransfer.2017.10.093
  • Huo Y, Wu C. Modeling the keyhole shape and ­dimension in plasma arc welding. China Welding. 2009;18(2):17–20.
  • Jian X, Wu CS, Zhang G, et al. A unified 3D model for an interaction mechanism of the plasma arc, weld Pool and keyhole in plasma arc welding. J. Phys. D: appl. Phys. 2015;48(46):465504. doi: 10.1088/0022-3727/48/46/465504
  • Haidar J. Non-equilibrium modelling of transferred arcs. J. Phys. D: appl. Phys. 1999;32(3):263–272. doi: 10.1088/0022-3727/32/3/014
  • Sansonnens L, Haidar J, Lowke JJ. Prediction of properties of free burning arcs including effects of ambipolar diffusion. J. Phys. D: appl. Phys. 2000;33(2):148–157. doi: 10.1088/0022-3727/33/2/309
  • Lago F, Gonzalez JJ, Freton P, et al. A numerical modelling of an electric arc and its interaction with the anode: part I. The two-dimensional model. J. Phys. D: appl. Phys. 2004;37(6):883–897. doi: 10.1088/0022-3727/37/6/013
  • Lowke JJ, Tanaka M. ‘LTE-diffusion approximation’for arc calculations. J. Phys. D: appl. Phys. 2006;39(16):3634–3643. doi: 10.1088/0022-3727/39/16/017
  • Li TQ, Wu CS, Chen J. Transient variation of arc heat flux and pressure distribution on keyhole wall in PAW. Weld World. 2016;60(2):363–371. doi: 10.1007/s40194-015-0290-8
  • Xu B, Jiang F, Chen S, et al. Numerical analysis of plasma arc physical characteristics under additional constraint of keyhole. Chinese Phys. B. 2018;27(3):034701. doi: 10.1088/1674-1056/27/3/034701
  • Li Y, Su C, Wang L, et al. Results in Engineering An easy-to-use multi-physical model to predict weld Pool geometry in keyhole plasma arc welding. Results Eng [Internet]. 2022;14:100429. Available from doi: 10.1016/j.rineng.2022.100429
  • Daha MA, Nassef GA, Abdallah IA, et al. Three-dimensional thermal finite element modeling for keyhole plasma arc welding of 2205 duplex stainless steel plates. Int J Eng Technol. 2012;2:720–728.
  • Baruah M, Bag S. Influence of heat input in ­microwelding of titanium alloy by micro plasma arc. J Mater Process Technol [Internet]. 2016;231:100–112. Available from doi: 10.1016/j.jmatprotec.2015.12.014
  • Dhinakaran V, Shanmugam NS, Sankaranarayanasamy K. Experimental investigation and numerical simulation of weld bead geometry and temperature distribution during plasma arc welding of thin Ti-6Al-4V sheets. J Strain Anal Eng Des. 2017;52(1):30–44. doi: 10.1177/0309324716669612

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.