1,638
Views
70
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of cutting tool wear during milling process using artificial intelligence techniques

ORCID Icon, &
Pages 174-182 | Received 19 Apr 2018, Accepted 11 Nov 2018, Published online: 26 Nov 2018

References

  • Aliustaoglu, C., H. Metin Ertunc, and H. Ocak. 2009. “Tool Wear Condition Monitoring Using a Sensor Fusion Model Based on Fuzzy Inference System.” Mechanical Systems and Signal Processing 23 (2): 539–546. doi:10.1016/j.ymssp.2008.02.010.
  • Alonso, F. J., and D. R. Salgado. 2005. “Application of Singular Spectrum Analysis to Tool Wear Detection Using Sound Signals.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219 (9): 703–710. doi:10.1243/095440505X32634.
  • Boud, F., and N. N. Z. Gindy. 2008. “Application of Multi-Sensor Signals for Monitoring Tool/Workpiece Condition in Broaching.” International Journal of Computer Integrated Manufacturing 21 (6): 715–729. doi:10.1080/09511920701233357.
  • Cho, S., S. Binsaeid, and S. Asfour. 2010. “Design of Multisensor Fusion-Based Tool Condition Monitoring System in End Milling.” The International Journal of Advanced Manufacturing Technology 46 (5–8): 681–694. doi:10.1007/s00170-009-2110-z.
  • Cica, D., B. Sredanovic, and D. Kramar. 2015. “Modelling of Tool Life and Surface Roughness in Hard Turning Using Soft Computing Techniques: A Comparative Study.” International Journal of Materials and Product Technology 50 (1): 49–64. doi:10.1504/IJMPT.2015.066866.
  • Cuka, B., and D.-W. Kim. 2017. “Fuzzy Logic Based Tool Condition Monitoring for End-Milling.” Robotics and Computer-Integrated Manufacturing 47 (C): 22–36. doi:10.1016/j.rcim.2016.12.009.
  • Čuš, F., and Ž. Uroš. 2011. “Real-Time Cutting Tool Condition Monitoring in Milling.” Strojniški vestnik-Journal of Mechanical Engineering 57 (2): 142–150. doi:10.5545/sv-jme.2010.079.
  • Dimla, D. E. 2000. “Sensor Signals for Tool-Wear Monitoring in Metal Cutting Operations—A Review of Methods.” International Journal of Machine Tools and Manufacture 40 (8): 1073–1098. doi:10.1016/S0890-6955(99)00122-4.
  • El-Mounayri, H., H. Kishawy, and V. Tandon. 2002. “Optimized CNC End-Milling: A Practical Approach.” International Journal of Computer Integrated Manufacturing 15 (5): 453–470. doi:10.1080/09511920110118803.
  • Fu, T., J. Zhao, and W. Liu. 2012. “Multi-Objective Optimization of Cutting Parameters in High-Speed Milling Based on Grey Relational Analysis Coupled with Principal Component Analysis.” Frontiers of Mechanical Engineering 7 (4): 445–452. doi:10.1007/s11465-012-0338-z.
  • Ghosh, N., Y. B. Ravi, A. Patra, S. Mukhopadhyay, S. Paul, A. R. Mohanty, and A. B. Chattopadhyay. 2007. “Estimation of Tool Wear during CNC Milling Using Neural Network-Based Sensor Fusion.” Mechanical Systems and Signal Processing 21 (1): 466–479. doi:10.1016/j.ymssp.2005.10.010.
  • Jemielniak, K., T. Urbański, J. Kossakowska, and B. Sebastian. 2012. “Tool Condition Monitoring Based on Numerous Signal Features.” The International Journal of Advanced Manufacturing Technology 59 (1–4): 73–81. doi:10.1007/s00170-011-3504-2.
  • Kara, F., K. Aslantas, and A. Çiçek. 2015. “ANN and Multiple Regression Method-Based Modelling of Cutting Forces in Orthogonal Machining of AISI 316L Stainless Steel.” Neural Computing and Applications 26 (1): 237–250. doi:10.1007/s00521-014-1721-y.
  • Kara, F., K. Aslantaş, and Ç. Adem. 2016. “Prediction of Cutting Temperature in Orthogonal Machining of AISI 316L Using Artificial Neural Network.” Applied Soft Computing 38: 64–74. doi:10.1016/j.asoc.2015.09.034.
  • Kaya, B., C. Oysu, and H. M. Ertunc. 2011. “Force-Torque Based On-Line Tool Wear Estimation System for CNC Milling of Inconel 718 Using Neural Networks.” Advances in Engineering Software 42 (3): 76–84. doi:10.1016/j.advengsoft.2010.12.002.
  • Khorasani, A., and M. R. S. Yazdi. 2017. “Development of a Dynamic Surface Roughness Monitoring System Based on Artificial Neural Networks (ANN) in Milling Operation.” The International Journal of Advanced Manufacturing Technology 93 (1–4): 141–151. doi:10.1007/s00170-015-7922-4.
  • Kopač, J., and Š. Samo. 2001. “Tool Wear Monitoring during the Turning Process.” Journal of Materials Processing Technology 113 (1): 312–316. doi:10.1016/S0924-0136(01)00621-5.
  • Kuo, R. J. 2000. “Multi-Sensor Integration for On-Line Tool Wear Estimation through Artificial Neural Networks and Fuzzy Neural Network.” Engineering Applications of Artificial Intelligence 13 (3): 249–261. doi:10.1016/S0952-1976(00)00008-7.
  • Kuo, R. J., and P. H. Cohen. 1999. “Multi-Sensor Integration for On-Line Tool Wear Estimation through Radial Basis Function Networks and Fuzzy Neural Network.” Neural Networks 12 (2): 355–370.
  • Lee, J., H. J. Choi, J. Nam, S. B. Jo, M. Kim, and S. W. Lee. 2017. “Development and Analysis of an Online Tool Condition Monitoring and Diagnosis System for a Milling Process and Its Real-Time Implementation.” Journal of Mechanical Science and Technology 31 (12): 5695–5703. doi:10.1007/s12206-017-1110-4.
  • Liu, T.-I., and B. Jolley. 2015. “Tool Condition Monitoring (TCM) Using Neural Networks.” The International Journal of Advanced Manufacturing Technology 78 (9–12): 1999–2007. doi:10.1007/s00170-014-6738-y.
  • Lu, M.-C., and E. Kannatey-Asibu. 2002. “Analysis of Sound Signal Generation Due to Flank Wear in Turning.” Journal of Manufacturing Science and Engineering 124 (4): 799–808. doi:10.1115/1.1511177.
  • Lu, M.-C., and B.-S. Wan. 2013. “Study of High-Frequency Sound Signals for Tool Wear Monitoring in Micromilling.” The International Journal of Advanced Manufacturing Technology 66 (9): 1785–1792. doi:10.1007/s00170-012-4458-8.
  • Mikołajczyk, T., K. Nowicki, A. Bustillo, and D. Yu Pimenov. 2018. “Predicting Tool Life in Turning Operations Using Neural Networks and Image Processing.” Mechanical Systems and Signal Processing 104: 503–513. doi:10.1016/j.ymssp.2017.11.022.
  • Muñoz-Escalona, P., and P. Maropoulos. 2010. “Integrated Optimisation of Surface Roughness and Tool Performance When Face Milling 416 SS.” International Journal of Computer Integrated Manufacturing 23 (3): 248–256. doi:10.1080/09511920903529230.
  • Patra, K., A. K. Jha, T. Szalay, J. Ranjan, and L. Monostori. 2017. “Artificial Neural Network Based Tool Condition Monitoring in Micro Mechanical Peck Drilling Using Thrust Force Signals.” Precision Engineering 48: 279–291. doi:10.1016/j.precisioneng.2016.12.011.
  • Quintana, G., A. Bustillo, and J. Ciurana. 2012. “Prediction, Monitoring and Control of Surface Roughness in High-Torque Milling Machine Operations.” International Journal of Computer Integrated Manufacturing 25 (12): 1129–1138. doi:10.1080/0951192X.2012.684717.
  • Raja, J., L. Kiong, and L. Soong. 2013. “Hilbert-Huang Transform-Based Emitted Sound Signal Analysis for Tool Flank Wear Monitoring.” Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 38 (8): 2219-2226.
  • Raja, J. E., W. S. Lim, and C. Venkataseshaiah. 2012. “Emitted Sound Analysis for Tool Flank Wear Monitoring Using Hilbert Huang Transform.” International Journal of Computer and Electrical Engineering 4 (2): 110 -114.
  • Rajamohan, S., and R. Kasimani. 2018. “Analytical Characterization of Products Obtained from Slow Pyrolysis of Calophyllum Inophyllum Seed Cake: Study on Performance and Emission Characteristics of Direct Injection Diesel Engine Fuelled with Bio-Oil Blends.” Environmental Science and Pollution Research 25: 9523 - 9538.
  • Rizal, M., J. A. Ghani, M. Z. Nuawi, and C. H. Che Haron. 2013. “Online Tool Wear Prediction System in the Turning Process Using an Adaptive Neuro-Fuzzy Inference System.” Applied Soft Computing 13 (4): 1960–1968. doi:10.1016/j.asoc.2012.11.043.
  • Rodríguez, J. J., G. Quintana, A. Bustillo, and J. Ciurana. 2017. “A Decision-Making Tool Based on Decision Trees for Roughness Prediction in Face Milling.” International Journal of Computer Integrated Manufacturing 30 (9): 943–957. doi:10.1080/0951192X.2016.1247991.
  • Saglam, H., and A. Unuvar. 2003. “Tool Condition Monitoring in Milling Based on Cutting Forces by a Neural Network.” International Journal of Production Research 41 (7): 1519–1532. doi:10.1080/0020754031000073017.
  • Salgado, D. R., and F. J. Alonso. 2007. “An Approach Based on Current and Sound Signals for In-Process Tool Wear Monitoring.” International Journal of Machine Tools and Manufacture 47 (14): 2140–2152. doi:10.1016/j.ijmachtools.2007.04.013.
  • Seemuang, N., T. McLeay, and T. Slatter. 2016. “Using Spindle Noise to Monitor Tool Wear in a Turning Process.” The International Journal of Advanced Manufacturing Technology 86 (9–12): 2781–2790. doi:10.1007/s00170-015-8303-8.
  • Shankar, S., and T. Mohanraj 2015. “Tool Condition Monitoring in Milling Using Sensor Fusion Technique.” Proceedings of Malaysian International Tribology Conference 2015, Malaysia
  • Shankar, S., and T. Mohanraj. 2017. “Experimental Investigation and Process Parameter Optimization in Milling of 7075 – T6 Hybrid Aluminium Metal Matrix Composite Using Response Surface Methodology.” Journal of the Balkan Tribological Association 23 (1): 124–138.
  • Shankar, S., T. Mohanraj, and S. K. Thangarasu. 2016. “Multi-Response Milling Process Optimization Using the Taguchi Method Coupled to Grey Relational Analysis.” Materials Testing 58 (5): 462–470. doi:10.3139/120.110869.
  • Shankar, S., S. K. Thangarasu, T. Mohanraj, and D. S. Pravien. 2015. “Prediction of Cutting Force in Turning Process: An Experimental and Fuzzy Approach.” Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology 28 (4): 1785–1793.
  • Shi, X., R. Wang, Q. Chen, and H. Shao. 2015. “Cutting Sound Signal Processing for Tool Breakage Detection in Face Milling Based on Empirical Mode Decomposition and Independent Component Analysis.” Journal of Vibration and Control 21 (16): 3348–3358. doi:10.1177/1077546314522826.
  • Tekıner, Z., and S. Yeşılyurt. 2004. “Investigation of the Cutting Parameters Depending on Process Sound during Turning of AISI 304 Austenitic Stainless Steel.” Materials & Design 25 (6): 507–513. doi:10.1016/j.matdes.2003.12.011.
  • Zhang, C., and H. Zhang. 2016. “Modelling and Prediction of Tool Wear Using LS-SVM in Milling Operation.” International Journal of Computer Integrated Manufacturing 29 (1): 76–91. doi:10.1080/0951192X.2014.1003408.
  • Zhou, Y., and W. Xue. 2018. “Review of Tool Condition Monitoring Methods in Milling Processes.” The International Journal of Advanced Manufacturing Technology 96: 2509 - 2523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.