182
Views
4
CrossRef citations to date
0
Altmetric
Articles

Angle analysis of fabric wrinkle by projected profile light line method, image processing and neuro-fuzzy system

, & ORCID Icon
Pages 1167-1184 | Received 31 Jul 2019, Accepted 22 Sep 2020, Published online: 13 Oct 2020

References

  • AATCC test method 128-1999. 2000. “Wrinkle Recovery of Fabrics.” Appearance Method, AATCC Technical Manual 75: 213–214.
  • Abrishami, A., F. Mousazadeghan, and G. Kipchirchir. 2019. “Evaluating the Crease Recovery Performance of Woven Fabrics considering Bending Behaviour in Various Directions.” Journal of the Textile Institute 110 (5): 690–699. doi:10.1080/00405000.2018.1511229.
  • Amirbayat, J., and M. J. Alagha. 1996. “Objective Assessment of Wrinkle Recovery by Means of Laser Triangulation.” Journal of the Textile Institute 87.2 (2): 349–355. doi:10.1080/00405009608659087.
  • Atalie, D., A. Ferede, and N. Ezazshahabi. 2019. “Effect of Weft Yarn Twist Level on Mechanical and Sensorial Comfort of 100% Woven Cotton Fabrics.” Journal of the Fashion & Textile Research 6 (3): 1–12. doi:10.1186/s40691-018-0169-6.
  • Behera, B. K., and R. Guruprasad. 2012. “Predicting Bending Rigidity of Woven Fabrics Using Adaptive Neuro-fuzzy Inference System (ANFIS).” Journal of the Textile Institute 103 (11): 1205–1212. doi:10.1080/00405000.2012.673296.
  • Can, Y., M. Akaydin, Y. Turhan, and E. Ay. 2009. “Effect of Wrinkle Resistance Finish on Cotton Fabric Properties.” Indian Journal of Fibre & Textile Research 34: 183–186.
  • Dehdar, M. M., M. J. Rezaee, M. Zarinbal, and H. Izadbakhsh. 2018. “Integrating Fuzzy Inference System, Image Processing and Quality Control to Detect Defects and Classify Quality Level of Copper Rods.” International Journal of Industrial Engineering & Production Research 29 (4): 461–469. doi:10.22068/ijiepr.29.4.461.
  • Fathi, E., M. J. Rezaee, R. Tavakkoli-Moghaddam, A. Alizadeh, and A. Montazer. 2020. “Design of an Integrated Model for Diagnosis and Classifying of Pediatrics Acute Leukemia Using Machine Learning.” Part H: Journal of Engineering in Medicine. doi:10.1177/0123456789123456.
  • Hadizadeh, M., M. Amani Tehran, and A. A. Jedi. 2010. “Application of an Adaptive Neuro-fuzzy System for Prediction of Initial Load—Extension Behavior of Plain-woven Fabrics.” Textile Research Journal 80 (10): 981–990. doi:10.1177/0040517509346451.
  • Hesarian, M. S. 2010. “Evaluation of Fabric Wrinkle by Projected Profile Light Line Method.” The Journal of the Textile Institute 101 (5): 463–470. doi:10.1080/13598130802528238.
  • Hu, J., B. Xin, and H. Yan. 2002. “Measuring and Modeling 3D Wrinkles in Fabrics.” Textile Research Journal 72 (10): 863–869. doi:10.1177/004051750207201003.
  • Hu, X., F. Sun, Q. Wang, and W. Gao. 2020. “In Situ Characterization of the Morphological Wrinkling of Woven Fibrous Materials by a Mechanical Test.” Textile Research Journal 90 (3–4): 333–343. doi:10.1177/0040517520910709.
  • Hussain, T., Z. A. Malik, Z. Arshad, and A. Nazir. 2014. “Comparison of Artificial Neural Network and Adaptive Neuro-fuzzy Inference System for Predicting the Wrinkle Recovery of Woven Fabrics.” The Journal of the Textile Institute 106 (9): 934–938. doi:10.1080/00405000.2014.953790.
  • Jahan, I. 2017. “Effect Of Fabric Structure On The Mechanical Properties Of Woven Fabrics.” Indian Journal of Advanced Research in Textile Engineering 2 (2): 1018.
  • Jamshaid, H., T. Hussain, and Z. A. Malik. 2013. “Comparison of Regression and Adaptive Neuro-fuzzy Models for Predicting the Bursting Strength of Plain Knitted Fabrics.” Fibers and Polymers 14 (7): 1203–1207. doi:10.1007/s12221-013-1203-3.
  • Jeguirim, S. E. G., A. B. Dhouib, M. Sahnoun, M. Cheikhrouhou, L. Schacher, and D. Adolphe. 2011. “The Use of Fuzzy Logic and Neural Networks Models for Sensory Properties Prediction from Process and Structure Parameters of Knitted Fabrics.” Journal of Intelligent Manufacturing 22.6 (6): 873–884. doi:10.1007/s10845-009-0362-y.
  • Joliffe, I. T., and B. J. T. Morgan. 1992. “Principal component analysis and exploratory factor analysis.” Statistical methods in medical research 1 (1): 69–95.
  • Kim, E. H. 1999. “Objective Evaluation of Wrinkle Recovery.” Textile Research Journal 69 (11): 860–865. doi:10.1177/004051759906901110.
  • Lim, H., J. Lee, and D.-W. Kim. 2017 “Optimization approach for feature selection in multi-label classification.” Pattern Recognition Letters 89 (2017): 25–30.
  • Liu, C. 2017. “Investigation on the Novel Measurement for Fabric Wrinkle Simulating Actual Wear.” Textile Institute of Journal 108 (2): 279–286. doi:10.1080/00405000.2016.1165384.
  • Liu, C., and Y. Fu. 2014. “Novel Measurement for Multidirectional Fabric Wrinkling Using Wavelet Analysis.” Journal of Fibers and Polymers 15 (6): 1337–1342. doi:10.1007/s12221-014-1337-y.
  • Liu, J., X. Wang, and Y. Lu. 2017. “A Novel Hybrid Methodology for Short-term Wind Power Forecasting Based on Adaptive Neuro-fuzzy Inference System.” Renewable Energy 103: 620–629. doi:10.1016/j.renene.2016.10.074.
  • Lu, Y., X. Hu, F. Sun, F. Peng, and W. Gao. 2020. “Determination of Optimal System Parameters to Characterize the Wrinkle Recovery of Fabrics by an Integrated Shape Retention Evaluation System.” Textile Research Journal 90 (1): 91–100. doi:10.1177/0040517519858770.
  • Manogaran, G., R. Varatharajan, and M. K. Priyan. 2018. “Hybrid Recommendation System for Heart Disease Diagnosis Based on Multiple Kernel Learning with Adaptive Neuro-fuzzy Inference System.” Multimedia Tools and Applications 77 (4): 4379–4399. doi:10.1007/s11042-017-5515-y.
  • Mori, T., and J. Komiyama. 2002. “Evaluation Wrinkle Fabrics with Image Analysis and Neural Networks.” Textile Research Journal 72 (5): 412–423. doi:10.1177/004051750207200508.
  • Nguyen, P. T., L. C. Chua, A. Talei, and Q. H. Chai. 2018. “Water Level Forecasting Using Neuro-fuzzy Models with Local Learning.” Neural Computing & Applications 30 (6): 1877–1887. doi:10.1007/s00521-016-2803-9.
  • Papageorgiou, E. I., K. Aggelopoulou, T. A. Gemtos, and G. D. Nanos. 2018. “Development and Evaluation of a Fuzzy Inference System and a Neuro-Fuzzy Inference System for Grading Apple Quality.” Applied Artificial Intelligence 32 (3): 253–280. doi:10.1080/08839514.2018.1448072.
  • Rajab, S., and V. Sharma. 2018. “A Review on the Applications of Neuro-fuzzy Systems in Business.” Artificial Intelligence Review 49 (4): 481–510. doi:10.1007/s10462-016-9536-0.
  • Rezaee, M. J., and A. Moini. 2013. “Reduction Method Based on Fuzzy Principal Component Analysis in Multi-objective Possibilistic Programming.” The International Journal of Advanced Manufacturing Technology 67 (1–4): 823–831. doi:10.1007/s00170-012-4526-0.
  • Rezaee, M. J., M. Dadkhah, and M. Falahinia. 2019. “Integrating Neuro-fuzzy System and Evolutionary Optimization Algorithms for Short-term Power Generation Forecasting.” International Journal of Energy Sector Management 13 (4): 828–845. doi:10.1108/IJESM-09-2018-0015.
  • El-Ghezal, J. S., A. B. Dhouib, M. Sahnoun, M. Cheikhrouhou, L. Schacher, and D. Adolphe. 2011.“The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics.” Journal of Intelligent Manufacturing 22 (6): 873–884.
  • Sheikhpour, R., M. A. Sarram, M. A. Z. Chahooki, and R. Sheikhpour. 2017. “A kernelized non-parametric classifier based on feature ranking in anisotropic Gaussian kernel.” Neurocomputing 267: 545–555
  • Solgi, A., A. Pourhaghi, R. Bahmani, and H. Zarei. 2017. “Improving SVR and ANFIS Performance Using Wavelet Transform and PCA Algorithm for Modeling and Predicting Biochemical Oxygen Demand (BOD).” Ecohydrology & Hydrobiology 17 (2): 164–175. doi:10.1016/j.ecohyd.2017.02.002.
  • Sun, J. J., M. Yao, B. G. Xu, and B. Patricia. 2011. “Fabric Wrinkle Characterization and Classification Using Modified Wavelet Coefficients and Support-vector-machine Classifiers.” Textile Research Journal 81 (9): 902–913. doi:10.1177/0040517510391702.
  • Tekin, E., and S. O. Akbas. 2019. “Predicting Groutability of Granular Soils Using Adaptive Neuro-fuzzy Inference System.” Neural Computing & Applications 31 (4): 1091–1101. doi:10.1007/s00521-017-3140-3.
  • Wang, J., K. Shi, L. Wang, R. Pan, and W. Gao. 2020b. “A Computer Vision System for Objective Fabric Smoothness Appearance Assessment with an Ensemble Classifier.” Textile Research Journal 90 (3–4): 333–343. doi:10.1177/0040517519866951.
  • Wang, J., K. Shi, L. Wang, Z. Li, F. Sun, R. Pan, W. Gao, et al. 2020a. “Automatic Assessment of Fabric Smoothness Appearance Based on a Compact Convolutional Neural Network with Label Smoothing.” IEEE Access Journal 8:26966–26974. doi:10.1109/ACCESS.2020.2971506.
  • Wang, L., Q. Tang, X. Zhang, and W. Gao. 2020c. Instrumental Evaluation of Fabric Shape Retention by Image Analysis. doi:10.1177/0040517520921505.
  • Xu, B., and D. F. Cuminato. 1998. “Evaluation Fabric Smoothness Appearance with a Laser Profilometer.” Textile Research Journal 68 (12): 900–906. doi:10.1177/004051759806801204.
  • Xu, B., and J. A. Reed. 1995. “Instrumental Evaluation of Fabric Wrinkle.” Textile Research Journal 86 (1): 123–134. doi:10.0.4.56/00405009508631316.
  • Xu, P., X. Ding, X. Wu, and R. Wang. 2018. “Characterization and Assessment of Fabric Smoothness Appearance Based on Sparse Coding.” Textile Research Journal 88 (4): 357–366. doi:10.1177/0040517516679148.
  • Yang., X. 2011. “Evaluate Fabric Wrinkle Grade Based on Subtractive Clustering Adaptive Network Fuzzy Inference Systems.” Advanced Materials Research Journal 332–334. www.scientific.net/AMR.332-334.1505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.