594
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A framework to integrate novelty detection and remaining useful life prediction in Industry 4.0-based manufacturing systems

ORCID Icon, ORCID Icon &
Pages 388-408 | Received 21 Apr 2020, Accepted 24 Jan 2021, Published online: 18 Mar 2021

References

  • Alasadi, S. A., and W. S. Bhaya. 2017. “Review of Data Preprocessing Techniques in Data Mining.” Journal of Engineering and Applied Sciences 12 (16): 4102–4107.
  • Beden, S. M., S. Abdullah, and A. K. Ariffin. 2009. “Review of Fatigue Crack Propagation Models for Metallic Components.” European Journal of Scientific Research 28 (3): 364–397.
  • Bever, K. 2007. “Understanding MIMOSA’s Open Standards for On-Board Health Assessment and Enterprise Application Integration.” In AIAA Infotech@ Aerospace 2007 Conference and Exhibit, 2925, Rohnert Park, California.
  • Boutrot, J., Y. Giorgiutti, F. Rezende, and S. Barras. 2017. “Reliable and Accurate Determination of Life Extension for Offshore Units.” In Offshore Technology Conference. Offshore Technology Conference, Houston, Texas, USA, May 1–4.
  • Caggiano, A. 2018. “Cloud-Based Manufacturing Process Monitoring for Smart Diagnosis Services.” International Journal of Computer Integrated Manufacturing 31 (7 (July 3)): 612–623. doi:https://doi.org/10.1080/0951192X.2018.1425552.
  • Cattaneo, L., and M. Macchi. 2019. “A Digital Twin Proof of Concept to Support Machine Prognostics with Low Availability of Run-To-Failure Data.” IFAC-PapersOnLine 52 (no. 10): 37–42. doi:https://doi.org/10.1016/j.ifacol.2019.10.016.
  • Chen, N., and K. L. Tsui. 2013. “Condition Monitoring and Remaining Useful Life Prediction Using Degradation Signals: Revisited.” IIE Transactions 45 (no. 9): 939–952. doi:https://doi.org/10.1080/0740817X.2012.706376.
  • Cho, S., G. May, I. Tourkogiorgis, R. Perez, O. Lazaro, B. de la Maza, and D. Kiritsis. 2018. “A Hybrid Machine Learning Approach for Predictive Maintenance in Smart Factories of the Future.„ In Advances in Production Management Systems. Smart Manufacturing for Industry 4.0. APMS 2018. IFIP Advances in Information and Communication Technology. edited by I. Moon, G. Lee, J. Park, D. Kiritsis, G. von Cieminski, vol 536, Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-319-99707-0_39
  • Cimino, C., E. Negri, and L. Fumagalli. 2019. “Review of Digital Twin Applications in Manufacturing.” Computers in Industry 113: 103–130. doi:https://doi.org/10.1016/j.compind.2019.103130.
  • Cubillo, A., S. Perinpanayagam, and M. Esperon-Miguez. 2016. “A Review of Physics-Based Models in Prognostics: Application to Gears and Bearings of Rotating Machinery.” Advances in Mechanical Engineering 8 (no. 8): 1–21. doi:https://doi.org/10.1177/1687814016664660.
  • Ćwikła, G. 2014. “Methods of Manufacturing Data Acquisition for Production Management-a Review.” Advanced Materials Research 837:: 618–623. Trans Tech Publ. doi:https://doi.org/10.4028/.scientific.net/AMR.837.618.
  • Da, X. L., E. L. Xu, and L. Li. 2018. “Industry 4.0: State of the Art and Future Trends.” International Journal of Production Research 56 (8): 2941–2962. doi:https://doi.org/10.1080/00207543.2018.1444806.
  • Di Maio, F., K. L. Tsui, and E. Zio. 2012. “Combining Relevance Vector Machines and Exponential Regression for Bearing Residual Life Estimation.” Mechanical Systems and Signal Processing 31: 405–427. doi:https://doi.org/10.1016/j.ymssp.2012.03.011.
  • Flath, C. M., and N. Stein. 2018. “Towards a Data Science Toolbox for Industrial Analytics Applications.” Computers in Industry 94: 16–25. doi:https://doi.org/10.1016/j.compind.2017.09.003.
  • Fumagalli, L., L. Cattaneo, I. Roda, M. Macchi, and M. Rondi. 2019. “Data-Driven CBM Tool for Risk-Informed Decision-Making in an Electric Arc Furnace.” International Journal of Advanced Manufacturing Technology105: 595–608. https://doi.org/https://doi.org/10.1007/s00170-019-04189-w.
  • Gao, R., L. Wang, R. Teti, D. Dornfeld, S. Kumara, M. Mori, and M. Helu. 2015. “Cloud-Enabled Prognosis for Manufacturing.” CIRP Annals 64 (2): 749–772. http://www.sciencedirect.com/science/article/pii/S000785061500150X.
  • García, S., S. Ramírez-Gallego, J. Luengo, J. M. Benítez, and F. Herrera. 2016. “Big Data Preprocessing: Methods and Prospects.” Big Data Analytics 1 (no. 1): 9. doi:https://doi.org/10.1186/s41044-016-0014-0.
  • Garetti, M., L. Fumagalli, and E. Negri. 2015. “Role of Ontologies for CPS Implementation in Manufacturing.” Management and Production Engineering Review 6 (4): 26–32. doi:https://doi.org/10.1515/mper-2015-0033.
  • Gebraeel, N. Z., M. A. Lawley, R. Li, and J. K. Ryan. 2005. “Residual-Life Distributions from Component Degradation Signals: A Bayesian Approach.” IiE Transactions 37 (6): 543–557. doi:https://doi.org/10.1080/07408170590929018.
  • Glaessgen, E., and D. Stargel. 2012. “The Digital Twin Paradigm for Future NASA and US Air Force Vehicles.” In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, Honolulu, Hawaii, April 23-26.
  • Grubbs, F. E. 1969. “Procedures for Detecting Outlying Observations in Samples.” Technometrics 11 (1): 1–21. doi:https://doi.org/10.1080/00401706.1969.10490657.
  • Guillén, A. J., A. Crespo, M. Macchi, and J. Gómez. 2016. “On the Role of Prognostics and Health Management in Advanced Maintenance Systems.” Production Planning and Control 27 (12): 991–1004. doi:https://doi.org/10.1080/09537287.2016.1171920.
  • Heng, A., S. Zhang, A. C. C. Tan, and J. Mathew. 2009. “Rotating Machinery Prognostics: State of the Art, Challenges and Opportunities.” Mechanical Systems and Signal Processing 23 (3): 724–739. doi:https://doi.org/10.1016/j.ymssp.2008.06.009.
  • Hsieh, Y.-S., F.-T. Cheng, H.-C. Huang, C.-R. Wang, S.-C. Wang, and H.-C. Yang. 2012. “VM-Based Baseline Predictive Maintenance Scheme.” IEEE Transactions on Semiconductor Manufacturing 26 (1): 132–144. doi:https://doi.org/10.1109/TSM.2012.2218837.
  • Huang, H.-Z., H.-K. Wang, Y.-F. Li, L. Zhang, and Z. Liu. 2015. “Support Vector Machine Based Estimation of Remaining Useful Life: Current Research Status and Future Trends.” Journal of Mechanical Science and Technology 29 (no. 1): 151–163. doi:https://doi.org/10.1007/s12206-014-1222-z.
  • ISO 55000. 2014. Asset Management — Overview, Principles and Terminology. British Standard Institution, BSI. London: Standards Publication.
  • Jardine, A. K. S., D. Lin, and D. Banjevic. 2006. “A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance.” Mechanical Systems and Signal Processing 20 (no. 7): 1483–1510. doi:https://doi.org/10.1016/j.ymssp.2005.09.012.
  • Johnson, R. A., and D. W. Wichern. 2002. Applied Multivariate Statistical Analysis. NJ: Prentice hall Upper Saddle River.
  • Kraft, J., and S. Kuntzagk. 2017. “Engine Fleet-Management: The Use of Digital Twins from a MRO Perspective.” In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, June 26–30. Charlotte, North Carolina, USA: American Society of Mechanical Engineers Digital Collection.
  • Kumar, A., R. B. Chinnam, and F. Tseng. 2019. “An HMM and Polynomial Regression Based Approach for Remaining Useful Life and Health State Estimation of Cutting Tools.” Computers & Industrial Engineering 128: 1008–1014. doi:https://doi.org/10.1016/j.cie.2018.05.017.
  • Le Son, K., M. Fouladirad, and A. Barros. 2016. “Remaining Useful Lifetime Estimation and Noisy Gamma Deterioration Process.” Reliability Engineering & System Safety 149: 76–87. doi:https://doi.org/10.1016/j.ress.2015.12.016.
  • Lee, G.-Y., M. Kim, Y.-J. Quan, M.-S. Kim, T. J. Y. Kim, H.-S. Yoon, S. Min, D.-H. Kim, J.-W. Mun, and J. W. Oh. 2018. “Machine Health Management in Smart Factory: A Review.” Journal of Mechanical Science and Technology 32 (3): 987–1009. doi:https://doi.org/10.1007/s12206-018-0201-1.
  • Lee, J., B. Bagheri, and H. A. Kao. 2015. “A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems.” Manufacturing Letters 3: 18–23. doi:https://doi.org/10.1016/j.mfglet.2014.12.001.
  • Lei, Y., N. Li, and J. Lin. 2016. “A New Method Based on Stochastic Process Models for Machine Remaining Useful Life Prediction.” IEEE Transactions on Instrumentation and Measurement 65 (12): 2671–2684. doi:https://doi.org/10.1109/TIM.2016.2601004.
  • Lei, Y., N. Li, L. Guo, N. Li, T. Yan, and J. Lin. 2018. “Machinery Health Prognostics: A Systematic Review from Data Acquisition to RUL Prediction.” Mechanical Systems and Signal Processing 104: 799–834.
  • Leturiondo, U., O. Salgado, L. Ciani, D. Galar, and M. Catelani. 2017. “Architecture for Hybrid Modelling and Its Application to Diagnosis and Prognosis with Missing Data.” Measurement 108: 152–162. doi:https://doi.org/10.1016/j.measurement.2017.02.003.
  • Li, C., S. Mahadevan, Y. Ling, S. Choze, and L. Wang. 2017. “Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin.” AIAA Journal 55 (3): 930–941. doi:https://doi.org/10.2514/1.J055201.
  • Li, N., N. Gebraeel, Y. Lei, L. Bian, and X. Si. 2019. “Remaining Useful Life Prediction of Machinery under Time-Varying Operating Conditions Based on a Two-Factor State-Space Model.” Reliability Engineering & System Safety 186: 88–100. doi:https://doi.org/10.1016/j.ress.2019.02.017.
  • Li, Y., and U. Roy. 2015. “Challenges in Developing a Computational Platform to Integrate Data Analytics with Simulation-Based Optimization.” In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, USA: American Society of Mechanical Engineers Digital Collection.
  • Liu, Q., M. Dong, W. Lv, X. Geng, and Y. Li. 2015. “A Novel Method Using Adaptive Hidden Semi-Markov Model for Multi-Sensor Monitoring Equipment Health Prognosis.” Mechanical Systems and Signal Processing 64: 217–232. doi:https://doi.org/10.1016/j.ymssp.2015.03.029.
  • Liu, -Y.-Y., M.-H. Hung, Y.-C. Lin, -C.-C. Chen, W.-L. Gao, and F.-T. Cheng. 2018. “A Cloud-Based Pluggable Manufacturing Service Scheme for Smart Factory.” In 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), 1040–1045. Munich, Germany: IEEE. doi:https://doi.org/10.1109/COASE.2018.8560401
  • Liu, Z., N. Meyendorf, and N. Mrad. 2018. “The Role of Data Fusion in Predictive Maintenance Using Digital Twin.” In AIP Conference Proceedings, 1949, 20023. Provo, Utah, USA: AIP Publishing LLC.
  • Luo, J., A. Bixby, K. Pattipati, L. Qiao, M. Kawamoto, and S. Chigusa. 2003. “An Interacting Multiple Model Approach to Model-Based Prognostics.” In SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483), 1, 189–194 Washington, DC, 2003, pp. 189–194 vol.1, doi: https://doi.org/10.1109/ICSMC.2003.1243813. IEEE
  • Luo, W., T. Hu, W. Zhu, and F. Tao. 2018. “Digital Twin Modeling Method for CNC Machine Tool.” In 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), 1–4. doi: https://doi.org/10.1109/ICNSC.2018.8361285.
  • Moyne, J., and J. Iskandar. 2017. “Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing.” Processes 5 (no. 3): 39.
  • Napoleone, A., M. Macchi, and A. Pozzetti. 2020. “A Review on the Characteristics of Cyber-Physical Systems for the Future Smart Factories.” Journal of Manufacturing Systems 54: 305–335. doi:https://doi.org/10.1016/j.jmsy.2020.01.007.
  • Nectoux, P., R. Gouriveau, K. Medjaher, E. Ramasso, B. Chebel-Morello, N. Zerhouni, and C. Varnier. 2012. PRONOSTIA: An Experimental Platform for Bearings Accelerated Degradation Tests. IEEE International Conference on Prognostics and Health Management, PHM '12, Jun 2012, Denver, Colorado, United States.
  • Negri, E., L. Fumagalli, and M. Macchi. 2017. “A Review of the Roles of Digital Twin in CPS-Based Production Systems.” Procedia Manufacturing 11 (June): 939–948. doi:https://doi.org/10.1016/j.promfg.2017.07.198.
  • Niu, G., B. S. Yang, and M. Pecht. 2010. “Development of an Optimized Condition-Based Maintenance System by Data Fusion and Reliability-Centered Maintenance.” Reliability Engineering and System Safety 95 (7 (July)): 786–796. doi:https://doi.org/10.1016/j.ress.2010.02.016.
  • Pan, D., J.-B. Liu, and J. Cao. 2016. “Remaining Useful Life Estimation Using an Inverse Gaussian Degradation Model.” Neurocomputing 185: 64–72. doi:https://doi.org/10.1016/j.neucom.2015.12.041.
  • Patnaik, P., and X. Wu. 2018. “Linking MRO to Prognosis Based Health Management through Physics-of-Failures Understanding.” Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy, Oslo, Norway, June 11–15. V006T24A007. ASME. https://doi.org/https://doi.org/10.1115/GT2018-75395
  • Pellegrino, J., M. Justiniano, A. Raghunathan, and B. A. Weiss. 2016. Measurement Science Roadmap for Prognostics and Health Management for Smart Manufacturing Systems. Roadmapping Workshop: Measurement Science for Prognostics and Health Management of Smart Manufacturing Systems, Gaithersburg, Maryland, USA. November 19-20.
  • Penas, O., R. Plateaux, S. Patalano, and M. Hammadi. 2017. “Multi-Scale Approach from Mechatronic to Cyber-Physical Systems for the Design of Manufacturing Systems.” Computers in Industry 86: 52–69. doi:https://doi.org/10.1016/j.compind.2016.12.001.
  • Pham, H. T., B.-S. Yang, and T. T. Nguyen. 2012. “Machine Performance Degradation Assessment and Remaining Useful Life Prediction Using Proportional Hazard Model and Support Vector Machine.” Mechanical Systems and Signal Processing 32: 320–330. doi:https://doi.org/10.1016/j.ymssp.2012.02.015.
  • Pimentel, M. A. F., D. A. Clifton, L. Clifton, and L. Tarassenko. 2014. “A Review of Novelty Detection.” Signal Processing 99: 215–249. doi:https://doi.org/10.1016/j.sigpro.2013.12.026.
  • Polenghi, A., I. Roda, M. Macchi, and P. Trucco. 2019. “Risk Sources Affecting the Asset Management Decision-Making Process in Manufacturing: A Systematic Review of the Literature.” In Advances in Production Management Systems. Production Management for the Factory of the Future. APMS 2019. IFIP Advances in Information and Communication Technology, edited by F. Ameri, K. Stecke, G. von Cieminski, and D. Kiritsis, 274–282. Vol. 566. Cham: Springer.
  • Polenghi, A., L. Fumagalli, and I. Roda. 2018. “Role of Simulation in Industrial Engineering: Focus on Manufacturing Systems.” in IFAC-PapersOnLine, 51, 496–501, 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, Elsevier B.V., June 11–13. doi:https://doi.org/10.1016/j.ifacol.2018.08.367
  • Qi, Q., and F. Tao. 2018. “Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison.” IEEE Access 6: 3585–3593. doi:https://doi.org/10.1109/ACCESS.2018.2793265.
  • Raman, V., and M. Hassanaly. 2019. “Emerging Trends in Numerical Simulations of Combustion Systems.” Proceedings of the Combustion Institute 37 (2): 2073–2089. doi:https://doi.org/10.1016/j.proci.2018.07.121.
  • Rúbio, E. M., R. P. Dionísio, and P. M. B. Torres. 2018. “Industrial IoT Devices and Cyber-Physical Production Systems: Review and Use Case.”In Innovation, Engineering and Entrepreneurship. HELIX 2018. Lecture Notes in Electrical Engineering, vol 505, Guimarães, Portugal on June 27–29, 2018, Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-319-91334-6_40
  • Saha, B., K. Goebel, and J. Christophersen. 2009. “Comparison of Prognostic Algorithms for Estimating Remaining Useful Life of Batteries.” Transactions of the Institute of Measurement and Control 31 (3–4): 293–308. doi:https://doi.org/10.1177/0142331208092030.
  • Shubenkova, K., A. Valiev, V. Shepelev, S. Tsiulin, and K. H. Reinau. 2018. “Possibility of Digital Twins Technology for Improving Efficiency of the Branded Service System.”2018 Global Smart Industry Conference (GloSIC), Chelyabinsk, 1-7. doi: https://doi.org/10.1109/GloSIC.2018.8570075.
  • Si, X.-S., W. Wang, C.-H. Hu, and D.-H. Zhou. 2011. “Remaining Useful Life Estimation–a Review on the Statistical Data Driven Approaches.” European Journal of Operational Research 213 (no. 1): 1–14. doi:https://doi.org/10.1016/j.ejor.2010.11.018.
  • Si, X.-S., W. Wang, C.-H. Hu, M.-Y. Chen, and D.-H. Zhou. 2013. “A Wiener-Process-Based Degradation Model with A Recursive Filter Algorithm for Remaining Useful Life Estimation.” Mechanical Systems and Signal Processing 35 (1–2): 219–237. doi:https://doi.org/10.1016/j.ymssp.2012.08.016.
  • Sikorska, J. Z., M. Hodkiewicz, and L. Ma. 2011. “Prognostic Modelling Options for Remaining Useful Life Estimation by Industry.” Mechanical Systems and Signal Processing 25 (5): 1803–1836. doi:https://doi.org/10.1016/j.ymssp.2010.11.018.
  • Sivalingam, K., M. Sepulveda, M. Spring, and P. Davies. 2018. “A Review and Methodology Development for Remaining Useful Life Prediction of Offshore Fixed and Floating Wind Turbine Power Converter with Digital Twin Technology Perspective.” In 2nd International Conference on Green Energy and Applications (ICGEA), 2018, 197-204. doi:https://doi.org/10.1109/ICGEA.2018.8356292.
  • Tao, F., M. Zhang, Y. Liu, and A. Y. C. Nee. 2018. “Digital Twin Driven Prognostics and Health Management for Complex Equipment.” CIRP Annals 67 (1): 169–172. doi:https://doi.org/10.1016/j.cirp.2018.04.055.
  • Tao, T., E. Zio, and W. Zhao. 2018. “A Novel Support Vector Regression Method for Online Reliability Prediction under Multi-State Varying Operating Conditions.” Reliability Engineering & System Safety 177: 35–49. doi:https://doi.org/10.1016/j.ress.2018.04.027.
  • Tian, Z. 2012. “An Artificial Neural Network Method for Remaining Useful Life Prediction of Equipment Subject to Condition Monitoring.” Journal of Intelligent Manufacturing 23 (no. 2): 227–237. doi:https://doi.org/10.1007/s10845-009-0356-9.
  • Tuegel, E. 2012. “The Airframe Digital Twin: Some Challenges to Realization.” In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, , Honolulu, Hawaii, April 23 - 26.
  • Tygesen, U. T., K. Worden, T. Rogers, G. Manson, and E. J. Cross. 2019. “State-of-the-Art and Future Directions for Predictive Modelling of Offshore Structure Dynamics Using Machine Learning.” In: Pakzad S. (eds) Dynamics of Civil Structures, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series, Orlando, Florida, USA, 12-15, Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-319-74421-6_30
  • Vachtsevanos, G., F. Lewis, M. Roemer, A. Hess, and B. Wu. 2006. Intelligent Fault Diagnosis and Prognosis for Engineering Systems. Hoboken, New Jersey: John Wiley & Sons, Inc.
  • Vathoopan, M., M. Johny, A. Zoitl, and A. Knoll. 2018. “Modular Fault Ascription and Corrective Maintenance Using a Digital Twin.” IFAC-PapersOnLine 51 (11): 1041–1046. doi:https://doi.org/10.1016/j.ifacol.2018.08.470.
  • Večeř, P., M. Kreidl, and R. Šmíd. 2005. “Condition Indicators for Gearbox Condition Monitoring Systems.” Acta Polytechnica 45 (6), 35–43.
  • Vogl, G. W., B. A. Weiss, and M. A. Donmez. 2014. “Standards for Prognostics and Health Management (PHM) Techniques within Manufacturing Operations.” In Annual Conference of the Prognostics and Health Management Society 2014, 576–588. National Institute of Standards and Technology Gaithersburg United States, Fort Worth, Texas, USA, 29 September – 2 October.
  • Wang, H., H. Wang, G. Jiang, J. Li, and Y. Wang. 2019. “Early Fault Detection of Wind Turbines Based on Operational Condition Clustering and Optimized Deep Belief Network Modeling.” Energies 12 (6): 984. doi:https://doi.org/10.3390/en12060984.
  • Wilder-James, E. 2016. “Breaking down Data Silos.” Harvard Business Review 12. https://hbr.org/2016/12/breaking-down-data-silos
  • Yeo, B., and D. Grant. 2018. “Predicting Service Industry Performance Using Decision Tree Analysis.” International Journal of Information Management 38 (1): 288–300. doi:https://doi.org/10.1016/j.ijinfomgt.2017.10.002.
  • Zaccaria, V., M. Stenfelt, I. Aslanidou, and K. G. Kyprianidis. 2018. “Fleet Monitoring and Diagnostics Framework Based on Digital Twin of Aero-Engines.” Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy. Oslo, Norway, June 11–15, 2018. V006T05A021. ASME. https://doi.org/https://doi.org/10.1115/GT2018-76414
  • Zemouri, R., and R. Gouriveau. 2010. “Towards Accurate and Reproducible Predictions for Prognostic: An Approach Combining a RRBF Network and an Autoregressive Model.” IFAC Proceedings Volumes 43 (3): 140–145. doi:https://doi.org/10.3182/20100701-2-PT-4012.00025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.