381
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Development of a structural framework to improve reconfigurable manufacturing system adoption in the manufacturing industry

, &
Pages 349-380 | Received 01 May 2021, Accepted 13 Jun 2022, Published online: 30 Jul 2022

References

  • Abdi, M. R., and A. W. Labib. 2003. “A Design Strategy for Reconfigurable Manufacturing Systems (Rmss) Using Analytical Hierarchical Process (AHP): A Case Study.” International Journal of Production Research 41 (10): 2273–2299. doi:10.1080/0020754031000077266.
  • Abdi, M. R., and A. W. Labib. 2004. “Feasibility Study of the Tactical Design Justification for Reconfigurable Manufacturing Systems Using the Fuzzy Analytical Hierarchical Process.” International Journal of Production Research 42 (15): 3055–3076. doi:10.1080/00207540410001696041.
  • Abdi, M. R., and A. W. Labib. 2004. “Grouping and Selecting Products: The Design Key of Reconfigurable Manufacturing Systems (Rmss).” International Journal of Production Research 42 (3): 521–546. doi:10.1080/00207540310001613665.
  • Abdi, M. R., and A. W. Labib. 2011. “Performance Evaluation of Reconfigurable Manufacturing Systems via Holonic Architecture and the Analytic Network Process.” International Journal of Production Research 49 (5): 1319–1335. doi:10.1080/00207543.2010.520989.
  • Abdi, M. R., and A. Labib. 2017. “RMS Capacity Utilization: Product Family and Supply Chain.” International Journal of Production Research 55 (7): 1930–1956. doi:10.1080/00207543.2016.1229066.
  • Abdi, M. R., A. Labib, F. D. Edalat, and A. Abdi. 2018. “RMS Performance Evaluation Using ANP and Holonic Structure.” Integrated Reconfigurable Manufacturing Systems and Smart Value Chain 197–215. doi:10.1007/978-3-319-76846-5.
  • Andersen, A. L., K. Nielsen, and T. D. Brunoe. 2016. “Prerequisites and Barriers for the Development of Reconfigurable Manufacturing Systems for High Speed Ramp-up.” Procedia CIRP 51: 7–12. doi:10.1016/j.procir.2016.05.043.
  • Andersen, A. L., T. D. Brunoe, K. Nielsen, and C. Rösiö. 2017. “Towards a Generic Design Method for Reconfigurable Manufacturing Systems: Analysis and Synthesis of Current Design Methods and Evaluation of Supportive Tools.” Journal of Manufacturing Systems 42: 179–195. doi:10.1016/j.jmsy.2016.11.006.
  • Asghar, E., U. Khaleeq, A. A. Baqai, and L. Homri. 2018. “Optimum Machine Capabilities for Reconfigurable Manufacturing Systems.” The International Journal of Advanced Manufacturing Technology 95 (9–12): 4397–4417. April.doi:10.1007/s00170-017-1560-y.
  • Ashraf, M., and F. Hasan. 2018. “Configuration Selection for a Reconfigurable Manufacturing Flow Line Involving Part Production with Operation Constraints.” International Journal of Advanced Manufacturing Technology 98 (5–8): 2137–2156. doi:10.1007/s00170-018-2361-7.
  • Battaïa, O., A. Dolgui, and N. Guschinsky. 2017. “Decision Support for Design of Reconfigurable Rotary Machining Systems for Family Part Production.” International Journal of Production Research 55 (5): 1368–1385. doi:10.1080/00207543.2016.1213451.
  • Bensmaine, M. D., L. B, and L. Benyoucef. 2014. “A New Heuristic for Integrated Process Planning and Scheduling in Reconfigurable Manufacturing Systems.” International Journal of Production Research 52 (12): 3583–3594. doi:10.1080/00207543.2013.878056.
  • Bi, Z. M., S. Y. T. Lang, W. Shen, and L. Wang. 2008. “Reconfigurable Manufacturing Systems: The State of the Art.” International Journal of Production Research 46 (4): 967–992. doi:10.1080/00207540600905646.
  • Bux, H., Z. Zhang, and N. Ahmad. 2020. “Promoting Sustainability through Corporate Social Responsibility Implementation in the Manufacturing Industry: An Empirical Analysis of Barriers Using the ISM-MICMAC Approach.” Corporate Social Responsibility and Environmental Management 1–20. October 2019. doi:10.1002/csr.1920.
  • Chaube, A., L. Benyoucef, and M. K. Tiwari. 2012. “An Adapted NSGA-2 Algorithm Based Dynamic Process Plan Generation for a Reconfigurable Manufacturing System.” Journal of Intelligent Manufacturing 23 (4): 1141–1155. doi:10.1007/s10845-010-0453-9.
  • da Silva, R. M., F. Junqueira, D. J. S. Filho, and P. E. Miyagi. 2016. “Control Architecture and Design Method of Reconfigurable Manufacturing Systems.” Control Engineering Practice 49: 87–100. doi:10.1016/j.conengprac.2016.01.009.
  • Deif, A. M., and W. H. ElMaraghy. 2006. “A Systematic Design Approach for Reconfigurable Manufacturing Systems.” Advances in Design 219–228. Dml. doi:10.1007/1-84628-210-1_18.
  • Dong, Z., S. Paul, K. Tassenberg, G. Melton, and H. Dong. 2021. “Transformation from human-readable Documents and Archives in Arc Welding Domain to machine-interpretable Data.” Computers in Industry 128: 103439. doi:10.1016/j.compind.2021.103439.
  • Dubey, R., A. Gunasekaran, P. Helo, T. Papadopoulos, S. J. Childe, and B. S. Sahay. 2017. “Explaining the Impact of Reconfigurable Manufacturing Systems on Environmental Performance: The Role of Top Management and Organizational Culture.” Journal of Cleaner Production 141: 56–66. doi:10.1016/j.jclepro.2016.09.035.
  • Elmaraghy, W. H., O. A. Nada, and H. A. Elmaraghy. 2008. “Quality Prediction for Reconfigurable Manufacturing Systems via Human Error Modelling.” International Journal of Computer Integrated Manufacturing 21 (5): 584–598. doi:10.1080/09511920701233464.
  • Garbie, I. 2014. “Performance Analysis and Measurement of Reconfigurable Manufacturing Systems.” Journal of Manufacturing Technology Management 25 (7): 934–957. doi:10.1108/JMTM-07-2011-0070.
  • Gašpar, T., M. Deniša, P. Radanovič, B. Ridge, T. R. Savarimuthu, A. Kramberger, … A. Ude. 2020. “Smart Hardware Integration with Advanced Robot Programming Technologies for Efficient Reconfiguration of Robot Workcells.” Robotics and Computer-Integrated Manufacturing. 66: 101979. October 2019. doi:10.1016/j.rcim.2020.101979
  • Gielisch, C., K. P. Fritz, B. Wigger, and A. Zimmermann. 2020. “Conceptual Planning of micro-assembly for a Better Utilization of Reconfigurable Manufacturing Systems.” Applied Sciences 10 (8): 2806. doi:10.3390/APP10082806
  • Haddou Benderbal, H., M. Dahane, and L. Benyoucef. 2017. “Flexibility-based multi-objective Approach for Machines Selection in Reconfigurable Manufacturing System (RMS) Design under Unavailability Constraints.” International Journal of Production Research 55 (20): 6033–6051. doi:10.1080/00207543.2017.1321802.
  • Haddou Benderbal, H., M. Dahane, and L. Benyoucef. 2018. “Modularity Assessment in Reconfigurable Manufacturing System (RMS) Design: An Archived Multi-Objective Simulated Annealing-based Approach.” International Journal of Advanced Manufacturing Technology 94 (1–4): 729–749. doi:10.1007/s00170-017-0803-2.
  • Hadi Mousavi-Nasab, S., and A. Sotoudeh-Anvari. 2020. “An Extension of best-worst Method with D Numbers: Application in Evaluation of Renewable Energy Resources.” Sustainable Energy Technologies and Assessments 40: 100771. June. doi:10.1016/j.seta.2020.100771.
  • Hsieh, F. S. 2018. “Design of Scalable agent-based Reconfigurable Manufacturing Systems with Petri Nets.” International Journal of Computer Integrated Manufacturing 31 (8): 748–759. doi:10.1080/0951192X.2018.1429665.
  • Hsieh, F. S. (2021). “A Dynamic Context-Aware Workflow Management Scheme for Cyber-Physical Systems Based on Multi-Agent System Architecture.” Applied Sciences (Switzerland), 11(5), 1–32. doi: 10.3390/app11052030.
  • Ishizaka, A., and G. Resce. 2020. “Best-Worst PROMETHEE Method for Evaluating School Performance in the OECD’s PISA Project.” Socio-Economic Planning Sciences 73: 100799. doi:10.1016/j.seps.2020.100799.
  • Kahloul, L., S. Bourekkache, and K. Djouani. 2016. “Designing Reconfigurable Manufacturing Systems Using Reconfigurable Object Petri Nets.” International Journal of Computer Integrated Manufacturing 29 (8): 889–906. doi:10.1080/0951192X.2015.1130262.
  • Koren, Y., U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, and H. Van Brussel. 1999. “Reconfigurable Manufacturing Systems.” CIRP Annals - Manufacturing Technology 48 (2): 527–540. doi:10.1016/S0007-8506(07)63232-6.
  • Kruger, K., and A. Basson. 2018. “Erlang-based Holonic Controller for a Palletized Conveyor Material Handling System.” Computers in Industry. 101: 120–126. October 2017. doi:10.1016/j.compind.2018.07.003.
  • Lameche, K., N. M. Najid, P. Castagna, and K. Kouiss. 2017. “Modularity in the Design of Reconfigurable Manufacturing Systems.” IFAC-PapersOnLine 50 (1): 3511–3516. doi:10.1016/j.ifacol.2017.08.939.
  • Lin, X., S. Cui, Y. Han, Z. Geng, and Y. Zhong. 2019. “An Improved ISM Method Based on GRA for Hierarchical Analyzing the Influencing Factors of Food Safety.” Food Control 99: 48–56. December 2018. doi: 10.1016/j.foodcont.2018.12.020.
  • Maganha, I., C. Silva, and L. M. D. F. Ferreira. 2018. “Understanding Reconfigurability of Manufacturing Systems: An Empirical Analysis.” Journal of Manufacturing Systems 48: 120–130. July. doi:10.1016/j.jmsy.2018.07.004.
  • Maganha, I., C. Silva, and L. M. D. F. Ferreira. 2019. “The Layout Design in Reconfigurable Manufacturing Systems: A Literature Review.” International Journal of Advanced Manufacturing Technology 105 (1–4): 683–700. doi:10.1007/s00170-019-04190-3.
  • Maganha, I., C. Silva, and L. M. D. F. Ferreira. 2020. “The Impact of Reconfigurability on the Operational Performance of Manufacturing Systems.” Journal of Manufacturing Technology Management 31 (1): 145–168. doi:10.1108/JMTM-12-2018-0450.
  • Malhotra, V. 2014. “Modelling the Barriers Affecting Design and Implementation of Reconfigurable Manufacturing System.” Int J Logistics Systems and Management 17 (2): 200–217. doi:10.1504/IJLSM.2014.059117.
  • Mubarok, K., and E. Faculty. 2010. “The Issues for the Implementation of Reconfigurable Manufacturing Systems in Small and Medium Manufacturing enterprises.” ARIKA, Pebruari 04 (1): 81–88.
  • Pansare, R., G. Yadav, and M. Nagare. 2021. “Reconfigurable Manufacturing System: A Systematic Review, meta-analysis, and Future Research Directions.” Journal of Engineering, Design, and Technology. doi:10.1108/JEDT-05-2021-0231.
  • Poduval, P. S., V. R. Pramod, and V. P. Jagathy Raj. 2015. “Interpretive Structural Modeling (ISM) and Its Application in Analyzing Factors Inhibiting Implementation of Total Productive Maintenance (TPM).” International Journal of Quality and Reliability Management 32 (3): 308–331. doi:10.1108/IJQRM-06-2013-0090.
  • Prasad, D., and S. C. Jayswal. 2019. “Assessment of a Reconfigurable Manufacturing System.” Benchmarking. doi:10.1108/BIJ-06-2018-0147.
  • Rajput, S., and S. P. Singh. 2019. “Identifying Industry 4.0 IoT Enablers by Integrated PCA-ISM-DEMATEL Approach.” Management Decision 57 (8): 1784–1817. doi:10.1108/MD-04-2018-0378.
  • Rana, N. P., D. J. Barnard, A. M. A. Baabdullah, D. Rees, and S. Roderick. 2019. “Exploring Barriers of m-commerce Adoption in SMEs in the UK: Developing a Framework Using ISM.” International Journal of Information Management 44: 141–153. June 2018. doi: 10.1016/j.ijinfomgt.2018.10.009.
  • Ribeiro, L., and J. Barata. 2011. “Re-thinking Diagnosis for Future Automation Systems : An Analysis of Current Diagnostic Practices and Their Applicability in Emerging IT Based Production Paradigms.” Computers in Industry 62 (7): 639–659. doi:10.1016/j.compind.2011.03.001.
  • Sen, M. K., S. Dutta, and G. Kabir. 2020. “Development of Flood Resilience Framework for Housing Infrastructure System: Integration of Best-Worst Method with Evidence Theory.” Journal of Cleaner Production 290: 125197. doi:10.1016/j.jclepro.2020.125197.
  • Singh, R. K., and A. Gupta. 2019. “Framework for Sustainable Maintenance System: ISM–fuzzy MICMAC and TOPSIS Approach.” Annals of Operations Research. doi:10.1007/s10479-019-03162-w.
  • Singh, M., R. Rathi, and J. A. Garza-reyes. 2021. “Analysis and Prioritization of Lean Six Sigma Enablers with Environmental Facets Using Best Worst Method : A Case of Indian MSMEs.” Journal of Cleaner Production 279: 123592. doi:10.1016/j.jclepro.2020.123592.
  • Yadav, G., and T. N. Desai. 2016. “Lean Six Sigma: A Categorized Review of the Literature.” International Journal of Lean Six Sigma 7 (1): 2–24. doi:10.1108/IJLSS-05-2015-0015.
  • Yadav, G., and T. N. Desai. 2017. “Analyzing Lean Six Sigma Enablers: A Hybrid ISM-fuzzy MICMAC Approach.” TQM Journal 29 (3): 488–510. doi:10.1108/TQM-04-2016-0041.
  • Yadav, G., S. K. Mangla, S. Luthra, and D. P. Rai. 2019. “Developing a Sustainable Smart City Framework for Developing Economies: An Indian Context.” Sustainable Cities and Society 47: 101462. February. doi:10.1016/j.scs.2019.101462.
  • Yadav, G., A. Kumar, S. Luthra, J. A. Garza-reyes, V. Kumar, and L. Batista. 2020. “A Framework to Achieve Sustainability in Manufacturing Organisations of Developing Economies Using Industry 4 0 Technologies’ Enablers.” Computers in Industry 122: 103280. doi:10.1016/j.compind.2020.103280.
  • Zhang, L., and B. Rodrigues. 2009. “Modelling Reconfigurable Manufacturing Systems with Coloured Timed Petri Nets.” International Journal of Production Research 47 (16): 4569–4591. August 2009. doi:10.1080/00207540801946662.
  • Zhou, F., M. K. Lim, Y. He, Y. Lin, and S. Chen. 2019. “End-of-life Vehicle (ELV) Recycling Management: Improving Performance Using an ISM Approach.” Journal of Cleaner Production 228: 231–243. doi:10.1016/j.jclepro.2019.04.182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.