1,944
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Secure application of graphene in medicine

, , , , , , , , , & show all
Pages 48-52 | Received 05 Jul 2020, Accepted 21 Aug 2020, Published online: 11 Dec 2020

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669.
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–191.
  • Cooper DR, D’Anjou B, Ghattamaneni N, et al. Experimental review of graphene. ISRN Condensed Matter Physics. 2012;2012:1–56.
  • Welsher K, Liu Z, Daranciang D, et al. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008;8(2):586–590.
  • Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 2009;3(11):3707–3713.
  • Karkischenko NN. Nanosafety: new approaches to estimation of risk and nanomaterials toxicity. Journal Biomed. 2009;1:5–27.
  • Khan HA, Shanker R. Toxicity of nanomaterials. Biomed Res Int. 2015;2015:521014.
  • Chen PC, Ishikawa FN, Chang HK, et al. A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology. 2009;20(12):125503–125508.
  • Zeng S, Baillargeat D, Ho HP, et al. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev. 2014;43(10):3426–3452.
  • Lebedev AA, Yu DV, Novikov SN, et al. Graphene-based biosensors. Tech Phys Lett. 2016;42(7):729–732.
  • Mannoor MS, Zhang S, Link AJ, et al. Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci USA. 2010;107(45):19207–19212.
  • Wu G, Meyyappan M, Lai KWC. Simulation of graphene field-effect transistor biosensors for bacterial detection. Sensors. 2018;18(6):1715.
  • Stebunov Yu V, Aftenieva OA, Arsenin AV, et al. Highly sensitive and selective sensor chips with graphene-oxide linking layer. ACS Appl Mater Interfaces. 2015;7(39):21727–21734.
  • He X-P, Deng Q, Cai L, et al. Fluorogenic resveratrol-confined graphene oxide for economic and rapid detection of Alzheimer’s disease. ACS Appl Mater Interfaces. 2014;6(8):5379–5382.
  • Park SY, Park J, Sim SH, et al. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater Weinheim. 2011;23(36):H263–H267.
  • Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater Weinheim. 2013;25(2):168–186.
  • Liu Y, Xu LP, Dai W, et al. Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale. 2015;7(45):19060–19065.
  • Yang Z, Ge C, Liu J, et al. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Nanoscale. 2015;7(44):18725–18737.
  • Poroyskiy SV, Nosaeva TA, Konyaeva NV. Use of graphene and graphene-based nanomaterials in medicine. Volgograd J Med Res. 2014;43(4):9–10.
  • Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10(9):3318–3323.
  • Feng L, Wu L, Qu X, et al. Solid-state reversible quadratic nonlinear optical molecular switch with an exceptionally large contrast. Adv Mater. 2013;25(2):168–186.
  • Li M, Yang X, Ren J, et al. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater Weinheim. 2012;24(13):1722–1728.