1,126
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Chao Nang Qing prescription promotes granulosa cell apoptosis and autophagy by targeting GATA3

, , , , , & show all
Article: 2223724 | Received 22 Mar 2023, Accepted 06 Jun 2023, Published online: 19 Jun 2023

References

  • Parker J, O’Brien C, Hawrelak J, et al. Polycystic ovary syndrome: an evolutionary adaptation to lifestyle and the environment. Int J Environ Res Public Health. 2022;19(3):1336. doi: 10.3390/ijerph19031336.
  • Sadeghi HM, Adeli I, Calina D, et al. Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing. Int J Mol Sci. 2022;23(2):583. doi: 10.3390/ijms23020583.
  • Choudhury AA, Rajeswari VD. Polycystic ovary syndrome (PCOS) increases the risk of subsequent gestational diabetes mellitus (GDM): a novel therapeutic perspective. Life Sci. 2022;310:1. doi: 10.1016/j.lfs.2022.121069.
  • Falzarano C, Lofton T, Osei-Ntansah A, et al. Nonalcoholic fatty liver disease in women and girls with polycystic ovary syndrome. J Clin Endocrinol Metab. 2022;107(1):258–8. doi: 10.1210/clinem/dgab658.
  • Osibogun O, Ogunmoroti O, Michos ED. Polycystic ovary syndrome and cardiometabolic risk: opportunities for cardiovascular disease prevention. Trends Cardiovasc Med. 2020;30(7):399–404. doi: 10.1016/j.tcm.2019.08.010.
  • Zhu T, Cui J, Goodarzi MO. Polycystic ovary syndrome and risk of type 2 diabetes, coronary heart disease, and stroke. Diabetes. 2021;70(2):627–637. doi: 10.2337/db20-0800.
  • Jozkowiak M, Piotrowska-Kempisty H, Kobylarek D, et al. Endocrine disrupting chemicals in polycystic ovary syndrome: the relevant role of the theca and granulosa cells in the pathogenesis of the ovarian dysfunction. Cells. 2022;12(1):174. doi: 10.3390/cells12010174.
  • Li Y, Liu YD, Zhou XY, et al. Let-7e modulates the proliferation and the autophagy of human granulosa cells by suppressing p21 signaling pathway in polycystic ovary syndrome without hyperandrogenism. Mol Cell Endocrinol. 2021;535:111392. (doi: 10.1016/j.mce.2021.111392.
  • Shen W, Jin B, Pan Y, et al. The effects of traditional Chinese Medicine-Associated complementary and alternative medicine on women with polycystic ovary syndrome. Evid Based Complement Alternat Med. 2021;2021:6619597. (doi: 10.1155/2021/6619597.
  • Jiang X, Yuan Y, Shi M, et al. Bu-shen-zhu-yun decoction inhibits granulosa cell apoptosis in rat polycystic ovary syndrome through estrogen receptor alpha-mediated PI3K/AKT/mTOR pathway. J Ethnopharmacol. 2022;288:114862. (doi: 10.1016/j.jep.2021.114862.
  • Jiang XL, Tai H, Xiao XS, et al. Cangfudaotan decoction inhibits mitochondria-dependent apoptosis of granulosa cells in rats with polycystic ovarian syndrome. Front Endocrinol (Lausanne). 2022;13:962154. (doi: 10.3389/fendo.2022.962154.
  • Wang C, Ding C, Hua Z, et al. Cangfudaotan decoction alleviates insulin resistance and improves follicular development in rats with polycystic ovary syndrome via IGF-1-PI3K/Akt-Bax/bcl-2 pathway. Mediators Inflamm. 2020;2020:8865647. 2020(doi: 10.1155/2020/8865647.
  • Zheng R, Shen H, Li J, et al. Qi gong wan ameliorates adipocyte hypertrophy and inflammation in adipose tissue in a PCOS mouse model through the Nrf2/HO-1/Cyp1b1 pathway: integrating network pharmacology and experimental validation in vivo. J Ethnopharmacol. 2023;301:115824. doi: 10.1016/j.jep.2022.115824.
  • Chi YN, Hai DM, Ma L, et al. Protective effects of leonurine hydrochloride on pyroptosis in premature ovarian insufficiency via regulating NLRP3/GSDMD pathway.Int Immunopharmacol. 2023;114:109520. doi: 10.1016/j.intimp.2022.109520.
  • Miao M, Tian S, Bai M, et al. Total glucosides of curculigo rhizome to perimenopausal period mice model. Pak J Pharm Sci. 2017;30(3, Suppl):975–978.
  • Bae H, Park N, Kim Y, et al. The modulative effect of cyperi rhizoma on Th1/Th2 lineage development. Cytokine. 2010;51(3):259–265. doi: 10.1016/j.cyto.2010.05.011.
  • Li X, Wang B, Li Y, et al. The Th1/Th2/Th17/treg paradigm induced by stachydrine hydrochloride reduces uterine bleeding in RU486-induced abortion mice. J Ethnopharmacol. 2013;145(1):241–253. doi: 10.1016/j.jep.2012.10.059.
  • Tanaka H, Takizawa Y, Takaku M, et al. Interaction of the pioneer transcription factor GATA3 with nucleosomes. Nat Commun. 2020;11(1):4136. doi: 10.1038/s41467-020-17959-y.
  • Khazaeli Najafabadi M, Mirzaeian E, Memar Montazerin S, et al. Role of GATA3 in tumor diagnosis: a review. Pathol Res Pract. 2021;226:153611. doi: 10.1016/j.prp.2021.153611.
  • Dai YT, Zhang F, Fang H, et al. Transcriptome-wide subtyping of pediatric and adult T cell acute lymphoblastic leukemia in an international study of 707 cases. Proc Natl Acad Sci USA. 2022;119(15):e2120787119.
  • Martin EM, Orlando KA, Yokobori K, et al. The estrogen receptor/GATA3/FOXA1 transcriptional network: lessons learned from breast cancer. Curr Opin Struct Biol. 2021;71:65–70. doi: 10.1016/j.sbi.2021.05.015.
  • Patrick AE, Wang W, Brokamp E, et al. Juvenile idiopathic arthritis associated with a mutation in GATA3. Arthritis Res Ther. 2019;21(1):156. doi: 10.1186/s13075-019-1946-3.
  • Qi X, Yun C, Sun L, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019;25(8):1225–1233. doi: 10.1038/s41591-019-0509-0.
  • Yin X, Grove L, Rogulski K, et al. Myc target in myeloid cells-1, a novel c-Myc target, recapitulates multiple c-Myc phenotypes. J Biol Chem. 2002;277(22):19998–20010. doi: 10.1074/jbc.M200860200.
  • Szczuko M, Kikut J, Szczuko U, et al. Nutrition strategy and life style in polycystic ovary Syndrome-Narrative review. Nutrients. 2021;13(7):2452. doi: 10.3390/nu13072452.
  • Liu Y, Li Z, Wang Y, et al. IL-15 participates in the pathogenesis of polycystic ovary syndrome by affecting the activity of granulosa cells. Front Endocrinol (Lausanne). 2022;13:787876. (doi: 10.3389/fendo.2022.787876.
  • Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14(4):367–378. doi: 10.1093/humupd/dmn015.
  • Galluzzi L, Green DR. Autophagy-Independent functions of the autophagy machinery. Cell. 2019;177(7):1682–1699. doi: 10.1016/j.cell.2019.05.026.
  • Kumariya S, Ubba V, Jha RK, et al. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective. Autophagy. 2021;17(10):2706–2733. doi: 10.1080/15548627.2021.1938914.
  • Liu M, Zhu H, Zhu Y, et al. Guizhi fuling wan reduces autophagy of granulosa cell in rats with polycystic ovary syndrome via restoring the PI3K/AKT/mTOR signaling pathway. J Ethnopharmacol. 2021;270:113821. doi: 10.1016/j.jep.2021.113821.
  • Pan X, Liu Y, Liu L, et al. Bushen jieyu tiaochong formula reduces apoptosis of granulosa cells via the PERK-ATF4-CHOP signaling pathway in a rat model of polycystic ovary syndrome with chronic stress. J Ethnopharmacol. 2022;292:114923. doi: 10.1016/j.jep.2021.114923.
  • Zaidan N, Ottersbach K. The multi-faceted role of Gata3 in developmental haematopoiesis. Open Biol. 2018;8(11):180152. doi: 10.1098/rsob.180152.
  • Callender LA, Schroth J, Carroll EC, et al. GATA3 induces mitochondrial biogenesis in primary human CD4(+) T cells during DNA damage. Nat Commun. 2021;12(1):3379. doi: 10.1038/s41467-021-23715-7.
  • Asselin-Labat ML, Sutherland KD, Barker H, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol. 2007;9(2):201–209. doi: 10.1038/ncb1530.
  • Bai F, Zhang LH, Liu X, et al. GATA3 functions downstream of BRCA1 to suppress EMT in breast cancer. Theranostics. 2021;11(17):8218–8233. doi: 10.7150/thno.59280.
  • Bai F, Zheng C, Liu X, et al. Loss of function of GATA3 induces basal-like mammary tumors. Theranostics. 2022;12(2):720–733. doi: 10.7150/thno.65796.
  • Rogulski KR, Cohen DE, Corcoran DL, et al. Deregulation of common genes by c-Myc and its direct target, MT-MC1. Proc Natl Acad Sci USA. 2005;102(52):18968–18973. doi: 10.1073/pnas.0507902102.
  • Fu S, Fu Y, Chen F, et al. Overexpression of MYCT1 inhibits proliferation and induces apoptosis in human acute myeloid leukemia HL-60 and KG-1a cells in vitro and in vivo. Front Pharmacol. 2018;9:1045. doi: 10.3389/fphar.2018.01045.
  • Wang HT, Tong X, Zhang ZX, et al. MYCT1 represses apoptosis of laryngeal cancerous cells through the MAX/miR-181a/NPM1 pathway. FEBS J. 2019;286(19):3892–3908. doi: 10.1111/febs.14942.
  • Xu XP, Peng XQ, Yin XM, et al. miR-34a-5p suppresses the invasion and metastasis of liver cancer by targeting the transcription factor YY1 to mediate MYCT1 upregulation. Acta Histochem. 2020;122(6):151576. doi: 10.1016/j.acthis.2020.151576.