1,304
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Emerging trends and research priorities in premature ovarian insufficiency genes: a bibliometric and visualization study

, , &
Article: 2283033 | Received 31 Jul 2023, Accepted 07 Nov 2023, Published online: 27 Nov 2023

References

  • Chon SJ, Umair Z, Yoon MS. Premature ovarian insufficiency: past, present, and future. Front Cell Dev Biol. 2021;9:1. doi: 10.3389/fcell.2021.672890.
  • Welt CK. Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol (Oxf). 2008;68(4):499–12. doi: 10.1111/j.1365-2265.2007.03073.x.
  • Webber L, Davies M, Anderson R, et al. Eshre guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–937.
  • Jiao X, Ke H, Qin Y, et al. Molecular genetics of premature ovarian insufficiency. Trends Endocrinol Metab. 2018;29(11):795–807. doi: 10.1016/j.tem.2018.07.002.
  • Yang Q, Mumusoglu S, Qin Y, et al. A kaleidoscopic view of ovarian genes associated with premature ovarian insufficiency and senescence. Faseb J. 2021;35(8):e21753. doi: 10.1096/fj.202100756R.
  • Turkyilmaz A, Alavanda C, Ates EA, et al. Whole-exome sequencing reveals new potential genes and variants in patients with premature ovarian insufficiency. J Assist Reprod Genet. 2022;39(3):695–710. doi: 10.1007/s10815-022-02408-0.
  • Huang C, Guo T, Qin Y. Meiotic recombination defects and premature ovarian insufficiency. Front Cell Dev Biol. 2021;9:652407. doi: 10.3389/fcell.2021.652407.
  • Jaillard S, Bell K, Akloul L, et al. New insights into the genetic basis of premature ovarian insufficiency: novel causative variants and candidate genes revealed by genomic sequencing. Maturitas. 2020;141:9–19. doi: 10.1016/j.maturitas.2020.06.004.
  • Ke H, Tang S, Guo T, et al. Landscape of pathogenic mutations in premature ovarian insufficiency. Nat Med. 2023;29(2):483–492. doi: 10.1038/s41591-022-02194-3.
  • Ma C, Su H, Li H. Global research trends on prostate diseases and erectile dysfunction: a bibliometric and visualized study. Front Oncol. 2020;10:627891. doi: 10.3389/fonc.2020.627891.
  • Wu H, Li Y, Tong L, et al. Worldwide research tendency and hotspots on hip fracture: a 20-year bibliometric analysis. Arch Osteoporos. 2021;16(1):73. doi: 10.1007/s11657-021-00929-2.
  • Auffray C, Caulfield T, Griffin JL, et al. From genomic medicine to precision medicine: highlights of 2015. Genome Med. 2016;8(1):12. doi: 10.1186/s13073-016-0265-4.
  • Qin Y, Shi Y, Zhao Y, et al. Mutation analysis of nobox homeodomain in chinese women with premature ovarian failure. Fertil Steril. 2009;91(4 Suppl):1507–1509. doi: 10.1016/j.fertnstert.2008.08.020.
  • Qin Y, Sun M, You L, et al. Esr1, hk3 and brsk1 gene variants are associated with both age at natural menopause and premature ovarian failure. Orphanet J Rare Dis. 2012;7(1):5. doi: 10.1186/1750-1172-7-5.
  • Zhao H, Chen ZJ, Qin Y, et al. Transcription factor figla is mutated in patients with premature ovarian failure. Am J Hum Genet. 2008;82(6):1342–1348. doi: 10.1016/j.ajhg.2008.04.018.
  • Chen X, Mu Y, Li C, et al. Mutation screening of hoxa7 and hoxa9 genes in chinese women with müllerian duct abnormalities. Reprod Biomed Online. 2014;29(5):595–599. doi: 10.1016/j.rbmo.2014.07.012.
  • Qin Y, Zhao H, Kovanci E, et al. Mutation analysis of nanos3 in 80 chinese and 88 caucasian women with premature ovarian failure. Fertil Steril. 2007;88(5):1465–1467. doi: 10.1016/j.fertnstert.2007.01.020.
  • Tassone F, Hagerman PJ, Hagerman RJ. Fragile x premutation. J Neurodev Disord. 2014;6(1):22.
  • Allingham-Hawkins DJ, Babul-Hirji R, Chitayat D, et al. Fragile x premutation is a significant risk factor for premature ovarian failure: the international collaborative pof in fragile x study–preliminary data. Am. J. Med. Genet. 1999;83(4):322–325. doi: 10.1002/(SICI)1096-8628(19990402)83:4<322::AID-AJMG17>3.0.CO;2-B.
  • Qin Y, Jiao X, Dalgleish R, et al. Novel variants in the sohlh2 gene are implicated in human premature ovarian failure. Fertil Steril. 2014;101(4):1104–1109.e6. e1106. doi: 10.1016/j.fertnstert.2014.01.001.
  • Qin Y, Vujovic S, Li G, et al. Ethnic specificity of variants of the esr1, hk3, brsk1 genes and the 8q22.3 locus: no association with premature ovarian failure (pof) in serbian women. Maturitas. 2014;77(1):64–67. doi: 10.1016/j.maturitas.2013.09.006.
  • Jeon YJ, Choi Y, Shim SH, et al. Vascular endothelial growth factor gene polymorphisms in korean patients with premature ovarian failure. Eur J Obstet Gynecol Reprod Biol. 2011;159(1):138–142. doi: 10.1016/j.ejogrb.2011.07.007.
  • Rah H, Jeon YJ, Choi Y, et al. Association between kinase insert domain-containing receptor polymorphisms (-604t > c, 1192g > a, 1719a > t) and premature ovarian failure in korean women. Menopause. 2012;19(9):1037–1042. doi: 10.1097/gme.0b013e318248f2e8.
  • Rah H, Jeon YJ, Choi Y, et al. Association of methylenetetrahydrofolate reductase (mthfr 677c > t) and thymidylate synthase (tser and ts 1494del6) polymorphisms with premature ovarian failure in korean women. Menopause. 2012;19(11):1260–1266. doi: 10.1097/gme.0b013e3182556b08.
  • Rah H, Jeon YJ, Shim SH, et al. Association of mir-146ac > g, mir-196a2t > c, and mir-499a > g polymorphisms with risk of premature ovarian failure in korean women. Reprod Sci. 2013;20(1):60–68. doi: 10.1177/1933719112450341.
  • Cho SH, Kim JH, Park HW, et al. Associations between hotair polymorphisms rs4759314, rs920778, rs1899663, and rs7958904 and risk of primary ovarian insufficiency in korean women. Maturitas. 2021;144:74–80. doi: 10.1016/j.maturitas.2020.10.023.
  • Park J, Park Y, Koh I, et al. Association of an apba3 missense variant with risk of premature ovarian failure in the korean female population. J Pers Med. 2020;10(4):193. doi: 10.3390/jpm10040193.
  • Jiao X, Qin C, Li J, et al. Cytogenetic analysis of 531 chinese women with premature ovarian failure. Hum Reprod. 2012;27(7):2201–2207. doi: 10.1093/humrep/des104.
  • Fu YH, Kuhl DP, Pizzuti A, et al. Variation of the cgg repeat at the fragile x site results in genetic instability: resolution of the sherman paradox. Cell. 1991;67(6):1047–1058. doi: 10.1016/0092-8674(91)90283-5.
  • Crisponi L, Deiana M, Loi A, et al. The putative forkhead transcription factor foxl2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet. 2001;27(2):159–166. doi: 10.1038/84781.
  • Nallathambi J, Moumné L, De Baere E, et al. A novel polyalanine expansion in foxl2: the first evidence for a recessive form of the blepharophimosis syndrome (bpes) associated with ovarian dysfunction. Hum Genet. 2007;121(1):107–112. doi: 10.1007/s00439-006-0276-0.
  • Benayoun BA, Dipietromaria A, Bazin C, et al. Foxl2: at the crossroads of female sex determination and ovarian function. Adv Exp Med Biol. 2009;665:207–226. doi: 10.1007/978-1-4419-1599-3_16.
  • Margulis S, Abir R, Felz C, et al. Bone morphogenetic protein 15 expression in human ovaries from fetuses, girls, and women. Fertil Steril. 2009;92(5):1666–1673. doi: 10.1016/j.fertnstert.2008.08.119.
  • Yoon SY, Yoon JA, Park M, et al. Recovery of ovarian function by human embryonic stem cell-derived mesenchymal stem cells in cisplatin-induced premature ovarian failure in mice. Stem Cell Res Ther. 2020;11(1):255. doi: 10.1186/s13287-020-01769-6.
  • Veitia RA. Primary ovarian insufficiency, meiosis and DNA repair. Biomed J. 2020;43(2):115–123. doi: 10.1016/j.bj.2020.03.005.
  • Ruth KS, Day FR, Hussain J, et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature. 2021;596(7872):393–397. doi: 10.1038/s41586-021-03779-7.
  • Chen Q, Liu K, Robinson AR, et al. DNA damage drives accelerated bone aging via an nf-κb-dependent mechanism. J Bone Miner Res. 2013;28(5):1214–1228. doi: 10.1002/jbmr.1851.
  • Lee SC, Chan JC. Evidence for DNA damage as a biological link between diabetes and cancer. Chin Med J (Engl). 2015;128(11):1543–1548. doi: 10.4103/0366-6999.157693.
  • Lee S, Dong HH. Foxo integration of insulin signaling with glucose and lipid metabolism. J Endocrinol. 2017;233(2):R67–r79. doi: 10.1530/JOE-17-0002.
  • Qin Y, Jiao X, Simpson JL, et al. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808. doi: 10.1093/humupd/dmv036.
  • Conway GS, Payne NN, Webb J, et al. Fragile x premutation screening in women with premature ovarian failure. Hum Reprod. 1998;13(5):1184–1187. doi: 10.1093/humrep/13.5.1184.
  • Watkins WJ, Umbers AJ, Woad KJ, et al. Mutational screening of foxo3a and foxo1a in women with premature ovarian failure. Fertil Steril. 2006;86(5):1518–1521. doi: 10.1016/j.fertnstert.2006.03.054.
  • Dang Y, Zhao S, Qin Y, et al. Microrna-22-3p is down-regulated in the plasma of han chinese patients with premature ovarian failure. Fertil Steril. 2015;103(3):802–807.e1. e801. doi: 10.1016/j.fertnstert.2014.12.106.
  • Umair Z, Baek MO, Song J, et al. Microrna-4516 in urinary exosomes as a biomarker of premature ovarian insufficiency. Cells. 2022;11(18):2797. doi: 10.3390/cells11182797.