3,172
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Why build a virtual brain? Large-scale neural simulations as jump start for cognitive computing

Pages 361-370 | Received 08 Jan 2015, Accepted 25 May 2015, Published online: 22 Feb 2016

References

  • Adee, S. (2010). The Markram Modha Controversy. IEEE Spectrum, 1 (47), 16–17.
  • Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R., Bussat, J., … Boahen, K. (2014). Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proceedings of the IEEE, 102, 699–716.10.1109/JPROC.2014.2313565
  • Boahen, K. (2005). Neuromorphic microchips. Scientific American, 292, 56–63.10.1038/scientificamerican0505-56
  • Bower, J. M. (1998). Constructing new models. In James M. Bower & D. Beeman (Eds.), The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed., Chapter 11, pp. 195–201). New York, NY: Springer-Verlag.10.1007/978-1-4612-1634-6
  • Brette, R. M., Carnevale, T., Hines, M., Beeman, D., Bower, J., Diesmann, M., … Destexhe, A. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23, 349–398.10.1007/s10827-007-0038-6
  • Carandini, M. (2012). From circuits to behavior: A bridge too far? Nature Neuroscience, 15, 507–509.10.1038/nn.3043
  • Choudhary, S., Sloan, S., Fok, S., Neckar, A., Trautmann, E., Gao, P., … Boahen, K. (2012). Silicon neurons that compute. In Artificial neural networks and machine learning – ICANN 2012 (pp. 121–128). Berlin Heidelberg: Springer.10.1007/978-3-642-33269-2
  • Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181–253.
  • Colombo, M. (2014). Deep and beautiful: The reward prediction error hypothesis of dopamine. Studies in history and philosophy of science part C: Studies in history and philosophy of biological and biomedical sciences, 45, 57–67.10.1016/j.shpsc.2013.10.006
  • Colombo, M. (2015a). Why Build a Virtual Brain? Large-scale Neural Simulations as Test-bed for Artificial Computing Systems. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society (pp. 429–434). Austin, TX: Cognitive Science Society.
  • Colombo, M. (2015b). For a Few Neurons More. Tractability and Neurally-Informed Economic Modelling. The British Journal for Philosophy of Science, 66, 713–736.
  • de Garis, H., Shuo, C., Goertzel, B., & Ruiting, L. (2010). A world survey of artificial brain projects, Part I: Large-scale brain simulations. Neurocomputing, 74, 3–29.10.1016/j.neucom.2010.08.004
  • Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. New York, NY: Oxford University Press.10.1093/acprof:oso/9780199794546.001.0001
  • Eliasmith, C., & Trujillo, O. (2014). The use and abuse of large-scale brain models. Current Opinion in Neurobiology, 25, 1–6.10.1016/j.conb.2013.09.009
  • Eliasmith, C., Terrence C., Stewart T. C., Choo, X., Bekolay, T., DeWolf, T., … Rasmussen, D. (2012). A large-scale model of the functioning brain. Science, 338, 1202–1205.10.1126/science.1225266
  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138.10.1038/nrn2787
  • Goertzel, B., Ruiting, L., Itamar, A., de Garis, H., & Chen, S. (2010). A world survey of artificial brain projects, Part ii. Biologically inspired cognitive architectures. Neurocomputing, 74, 30–49.
  • Grüne-Yanoff, T., & Weirich, P. (2010). Philosophy of simulation. Simulation and Gaming: An Interdisciplinary Journal, 41(1), 1–31.
  • Hartmann, S. (1996). The world as a process: Simulations in the natural and social sciences. In R. Hegselmann, U. Mueller, & K. G. Troitzsch (Eds.), Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View (pp. 77–100). Dordrecht: Kluwer.10.1007/978-94-015-8686-3
  • Hill, M. D. (1990). What is scalability? ACM SIGARCH Computer Architecture News, 18, 18–21.10.1145/121973
  • Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method. New York, NY: Oxford University Press.10.1093/0195158709.001.0001
  • Indiveri, G., & Horiuchi, T. K. (2011). Frontiers in neuromorphic engineering. Frontiers in Neuroscience, 5, 118. doi:10.3389/fnins.2011.00118.
  • Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the national academy of sciences, 105(9), 3593–3598.
  • Kelly, J. E., & Hamm, S. (2013). Smart machines: IBM’s watson and the era of cognitive computing. New York, NY: Columbia Business School Publishing.
  • Mainen, Z. F., & Pouget, A. (2014). European Commission: Put brain project back on course. Nature, 511, 534–534.10.1038/511534b
  • Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience, 7, 153–160.10.1038/nrn1848
  • Modha, D. S., Ananthanarayanan, R., Esser, S. K., Ndirango, A., Sherbondy, A. J., & Singh, R. (2011). Cognitive computing. Communications of the ACM, 54, 62–71.10.1145/1978542
  • Montague, P. R. (2007). Your brain is almost perfect. New York, NY: Plume.
  • Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 37, 453–488.10.1111/cogs.2013.37.issue-3
  • Preissl, R., Wong, T. M., Datta, P., Myron, F., Raghavendra, S., Esser, S. K., … Modha, D. S. (2012, November 10–16). Compass: A scalable simulator for an architecture for cognitive computing. In Proceedings of the international conference for high performance computing, networking, storage, and analysis. SC’12. Salt Lake City, UT: IEEE Computer Society Press.
  • Sandberg, A., & Bostrom, N. (2008). Whole brain emulation: A roadmap. Oxford: Future of Humanity Institute, Oxford University.
  • Sporns, O. (2012). Discovering the human connectome. Cambridge, MA: MIT Press.
  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT press.
  • Teller, P. (2001). Twilight of the perfect model. Erkenntnis, 55, 393–415.10.1023/A:1013349314515
  • Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331, 1279–1285.10.1126/science.1192788
  • von Neumann, J. (1958). The computer and the brain. New Haven, CT: Yale University Press.
  • Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. New York, NY: Oxford University Press.10.1093/acprof:oso/9780199933662.001.0001
  • West, L. J., Pierce, C. M., & Thomas, W. D. (1962). Lysergic acid diethylamide: Its effects on a male Asiatic elephant. Science., 138, 1100–1103.10.1126/science.138.3545.1100
  • Wilson, M., Bhalla, U., Uhley, J., & Bower, J. (1989). GENESIS: A system for simulating neural networks. In D. Anderson (Ed.), Advances in neural information processing systems (pp. 485–492). New York, NY: American Institute of Physics.
  • Winsberg, E. (2013). Computer simulations in science. In Edward N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2013 Edition). Retrieved from http://plato.stanford.edu/archives/sum2013/entries/simulations-science/