555
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

DiMPP: a complete distributed algorithm for multi-agent path planning

&
Pages 1129-1148 | Received 30 May 2016, Accepted 12 Feb 2017, Published online: 13 Apr 2017

References

  • Bernardini, S., Fox, M., & Long, D. (2014). Planning the behaviour of low-cost quadcopters for surveillance missions. In ICAPS (pp. 445–453). Portsmouth, NH.
  • Chouhan, S. S., & Niyogi, R. (2015). DMAPP: A distributed multi-agent path planning algorithm. LNAI, Vol. 9457. In 28th Australasian Joint Conference on Artificial Intelligence (pp. 123–135). Canberra, Australia.
  • Cirillo, M., Pecora, F., Andreasson, H., Uras, T., & Koenig, S. (2014). Integrated motion planning and coordination for industrial vehicles. In ICAPS (pp. 463–471). Portsmouth, NH.
  • De Weerdt, M. M., & Clement, B. (2009). Introduction to planning in multiagent systems. Multiagent and Grid Systems, 5, 345–355.
  • Erdmann, M., & Lozano-Perez, T. (1987). On multiple moving objects. Algorithmica, 2, 477–521.
  • Felner, A., Goldenberg, M., Sharon, G., Stern, R., Beja, T., Sturtevant, N. R., ... Holte, R. (2012). Partial-expansion A* with selective node generation. In AAAI (pp. 180–181). Toronto, Ontario.
  • Ferner, C., Wagner, G., & Choset, H. (2013). Odrm* optimal multirobot path planning in low dimensional search spaces. In ICRA (pp. 3854–3859). Karlsruhe, Germany.
  • Geramifard, A., Chubak, P., & Bulitko, V. (2006). Biased cost pathfinding. In AIIDE (pp. 112–114). Marina Del Rey, California.
  • Goldenberg, M., Felner, A., Stern, R., Sharon, G., Sturtevant, N. R., Holte, R. C., & Schaeffer, J. (2014). Enhanced partial expansion A*. Journal of Artificial Intelligence Research, 50, 141–187.
  • Hopcroft, J. E., Schwartz, J. T., & Sharir, M. (1984). On the complexity of motion planning for multiple independent objects; PSPACE-hardness of the warehouseman’s problem. International Journal of Robotics Research, 3, 76–88.
  • Khorshid, M. M., Holte, R. C., & Sturtevant, N. R. (2011). A polynomial-time algorithm for non-optimal multi-agent pathfinding. In SOCS (pp. 76–83). Barcelona, Spain.
  • Liu, S., Sun, D., & Zhu, C. (2014). A dynamic priority based path planning for cooperation of multiple mobile robots in formation forming. Robotics and Computer-Integrated Manufacturing, 30, 589–596.
  • Masehian, E., & Nejad, A. (2009). Solvability of multi agent motion planning problems on trees. In IEEE International Conference on Intelligent Agents and Systems (pp. 5936–5941). St. Louis, MO.
  • Parker, L. E. (2008). Distributed intelligence: Overview of the field and its application in multi-robot systems. Journal of Physical Agents, 2, 5–14.
  • Peasgood, M., Clark, C. M., & McPhee, J. (2008). A complete and scalable strategy for coordinating multiple robots within roadmaps. IEEE Transactions on Robotics, 24, 283–292.
  • Regele, R., & Levi, P. (2006). Cooperative multi-robot path planning by heuristic priority adjustment. In International Conference on Intelligent Robots and Systems (pp. 5954–5959). Beijing, China.
  • Röger, G., & Helmert, M. (2012). Non-optimal multi-agent pathfinding is solved (since 1984). In SOCS (pp. 173–174). Niagara falls, Canada.
  • Ryan, M. (2006). Multi-robot path planning with subgraphs. In Proceedings of the 19th Australasian Conference on Robotics and Automation (pp. 1–8). Auckland, New Zealand.
  • Ryan, M. R. (2007). Graph decomposition for efficient multi-robot path planning. In IJCAI (pp. 2003–2008). Hyderabad, India.
  • Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015a). Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence, 219, 40–66.
  • Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015b). Conflict-based search for optimal multi-agent pathfinding. In AAAI (pp. 563–569). Austin, TX.
  • Silver, D. (2005). Cooperative pathfinding. In AIIDE (pp. 117–122). Marina Del Rey.
  • Standley, T. S. (2010). Finding optimal solutions to cooperative pathfinding problems. In AAAI (pp. 28–29). Atlanta, GA.
  • Sturtevant, N. (2012). Benchmarks for grid-based pathfinding. Transactions on Computational Intelligence and AI in Games, 4, 144–148.
  • Sturtevant, N. R., & Buro, M. (2006). Improving collaborative pathfinding using map abstraction. In AIIDE (pp. 80–85). Marina del Rey.
  • Surynek, P. (2009). A novel approach to path planning for multiple robots in bi-connected graphs. In ICRA (pp. 3613–3619). Kobe, Japan.
  • Ter Mors, A. W., Witteveen, C., Zutt, J., & Kuipers, F. A. (2010). Context-aware route planning. In German Conference on Multiagent System Technologies (pp. 138–149). Berlin, Germany.
  • Van Den Berg, J. P., & Overmars, M. H. (2005). Prioritized motion planning for multiple robots. In IROS (pp. 430–435). Edmonton, Canada.
  • Wagner, G., & Choset, H. (2015). Subdimensional expansion for multirobot path planning. Artificial Intelligence, 219, 1–24.
  • Wagner, G., & Choset, H. (2011). M*: A complete multirobot path planning algorithm with performance bounds. In IROS (pp. 3260–3267). San Francisco, California.
  • Wang, K.-H. C., & Botea, A. (2011). Mapp: a scalable multi-agent path planning algorithm with tractability and completeness guarantees. Journal of Artificial Intelligence Research, 42, 55–90.
  • Wang, K.-H. C., & Botea, A. (2009). Tractable multi-agent path planning on grid maps. In IJCAI (pp. 1870–1875). Pasadena, California.
  • Wilt, C., & Botea, A. (2014). Spatially distributed multiagent path planning. In ICAPS (pp. 332–340). Portsmouth, NH.
  • Wurman, P. R., D’Andrea, R., & Mountz, M. (2008). Coordinating hundreds of cooperative autonomous vehicles in warehouses. AI magazine, 29, 9–19.
  • Yu, W., Peng, J., & Zhang, X. (2014). A prioritized path planning algorithm for mmrs. In 33rd Chinese Control Conference (CCC) (pp. 966–971). Nanjing, China.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.