338
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Anthropomorphic reasoning about neuromorphic AGI safety

ORCID Icon, , &
Pages 1337-1351 | Received 23 Nov 2016, Accepted 05 Jul 2017, Published online: 19 Jul 2017

References

  • Amit, D., Gutfreund, H., & Sompolinsky, H. (1985). Spin-glass models of neural networks. Physical Review A, 32, 1007–1018.10.1103/PhysRevA.32.1007
  • Arai, S., & Suzuki, K. (2014). Encouragement of right social norms by inverse reinforcement learning. Journal of Information Processing, 22, 299–306. doi:10.2197/ipsjjip.22.299
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
  • Bandura, A., Ross, D., & Ross, S. A. (1961). Transmission of aggression through imitation of aggressive models. The Journal of Abnormal and Social Psychology, 63, 575–582.10.1037/h0045925
  • Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412, 79–83.10.1038/35083586
  • Becker, S. (2005). A computational principle for hippocampal learning and neurogenesis. Hippocampus, 15, 722–738.10.1002/(ISSN)1098-1063
  • Berger, T., Song, D., Chan, R., Marmarelis, V., LaCoss, J., Wills, J., … Granacki, J. (2012). A hippocampal cognitive prosthesis: Multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Transactions on Neural Systems Rehabilitation Engineering, 20, 198–211. doi:10.1109/TNSRE.2012.2189133
  • Bostrom, N. (2003). Ethical issues in advanced artificial intelligence. In G. E. Lasker, W. Wallach, & I. Smit (Eds.), Cognitive, emotive and ethical aspects of decision making in humans and in artificial intelligence (Vol. 2, pp. 12–17). Windsor, Ontario: International Institute for Advanced Studies in Systems Research and Cybernetics.
  • Bostrom, N. (2012). The superintelligent will: Motivation and instrumental rationality in advanced artificial agents. Minds and Machines, 22, 71–85.10.1007/s11023-012-9281-3
  • Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press.
  • Bowlby, J. (1969). Attachment (2nd ed., Vol. 1). New York, NY: Basic Books Classics.
  • Bubic, A., von Cramon, D., & Schubotz, R. (2010). Prediction, cognition, and the brain. Frontiers in Human Neuroscience, 4, 25. doi:10.3389/fnhum.2010.00025
  • Bugental, D. B. (2000). Acquisition of the algorithms of social life: A domain-based approach. Psychological Bulletin, 126, 187–219.10.1037/0033-2909.126.2.187
  • Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review, 114, 340–375.10.1037/0033-295X.114.2.340
  • Dayan, P. (2013). Exploration from generalization mediated by multiple controllers. In G. Baldassarre & M. Mirolli (Eds.), Intrinsically motivated learning in natural and artificial systems (pp. 73–91). Berlin: Springer.10.1007/978-3-642-32375-1
  • Deng, L., & Jaitly, N. (2015). Deep discriminative and generative models for pattern recognition. In C. Chen (Ed.), Handbook of pattern recognition and computer vision (pp. 27–52). Singapore: World Scientific.
  • Edelman, S. (2015). The minority report: Some common assumptions to reconsider in the modelling of the brain and behaviour. Journal of Experimental and Theoretical Artificial Intelligence, 28, 751–776. doi:10.1080/0952813X.2015.1042534
  • Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron, 44, 109–120. doi:10.1016/j.neuron.2004.08.028
  • Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., & Rasmussen, D. (2012). A large-scale model of the functioning brain. Science, 338, 1202–1205.10.1126/science.1225266
  • Gershman, S., Monfils, M., Norman, K., & Niv, Y. (2016). The computational nature of memory modification. Biorxiv. doi:10.1101/036442
  • Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., … Hassabis, D. (2016). Hybrid computing using a neural network with dynamic external memory. Nature, 538, 471–476. doi:10.1038/nature20101
  • Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks, 1, 17–61.10.1016/0893-6080(88)90021-4
  • Gurney, K., Lepora, N., Shah, A., Koene, A., & Redgrave, P. (2013). Action discovery and intrinsic motivation: A biologically constrained formalisation. In G. Baldassarre & M. Mirolli (Eds.), Intrinsically motivated learning in natural and artificial systems (pp. 151–181). Berlin: Springer.10.1007/978-3-642-32375-1
  • Hasselmo, M., Bodelón, C., & Wyble, B. (2002). A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14, 793–817.10.1162/089976602317318965
  • Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1601–1613.10.1098/rstb.2007.2055
  • Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2010). Neural mechanisms of acquired phasic dopamine responses in learning. Neuroscience & Biobehavioral Reviews, 34, 701–720.10.1016/j.neubiorev.2009.11.019
  • Hinton, G. (1992). How neural networks learn from experience. Scientific American, 267, 144–151.10.1038/scientificamerican0992-144
  • Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504–507.10.1126/science.1127647
  • Jilk, D. (2016). Limits to verification and validation of agentic behavior. arXiv:1604.06963v2 [cs.AI].
  • Jilk, D., Lebiere, C., O’Reilly, R., & Anderson, J. R. (2008). SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence, 20, 197–218.10.1080/09528130802319128
  • Kell, A., Yamins, D., Norman-Haignere, S., Seibert, D., Hong, H., DiCarlo, J., & McDermott, J. (2015). Computational similarities between visual and auditory cortex studied with convolutional neural networks and FMRI. Poster at VSS 2015.
  • Kenrick, D. T., Griskevicius, V., Neuberg, S. L., & Schaller, M. (2010). Renovating the pyramid of needs. Perspectives on Psychological Science, 5, 292–314.10.1177/1745691610369469
  • Ketz, N., Morkonda, S., & O’Reilly, R. (2013). Theta coordinated error-driven learning in the hippocampus. PLOS Computational Biology, 9, e1003067. doi:10.1371/journal.pcbi.1003067
  • Kidd, C., & Hayden, B. Y. (2015). The psychology and neuroscience of curiosity. Neuron, 88, 449–460.10.1016/j.neuron.2015.09.010
  • Krizhevsky, A., Sutskever, I., & Hinton, G. (2013). Imagenet classification with deep convolutional neural networks. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, & K. Weinberger (Eds.), Advances in neural information processing systems 25: 26th annual conference on neural information processing systems 2012 (pp. 1106–1114). Red Hook, NJ: Curran.
  • Lin, H., & Tegmark, M. (2016). Why does deep and cheap learning work so well? arXiv:1608.08225.
  • Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116, 75–98.10.1037/0033-2909.116.1.75
  • Michaelson, L. E., & Munakata, Y. (2016). Trust matters: Seeing how an adult treats another person influences preschoolers’ willingness to delay gratification. Developmental Science, 19, 1011–1019. doi:10.1111/desc.12388
  • Mikulincer, M., & Shaver, P. R. (2012). Attachment theory expanded: A behavioural systems approach to personality. In K. Deaux & M. Snyder (Eds.), Oxford handbook of personality and social psychology (pp. 467–492). New York, NY: Oxford University Press.
  • Mnih, V., Riedmiller, M., King, H., Kumaran, D., Kavukcuoglu, K., Fidjeland, A. K., … Antonoglou, I. (2015). Human-level control through deep reinforcement learning. arXiv:1312.5602.
  • Mori, M. (1970). The uncanny valley. Energy, 7, 33–35. English translation available online. Retrieved from https://spectrum.ieee.org/automaton/robotics/humanoids/the-uncanny-valley
  • Moskowitz, G. B., & Grant, H. (2009). The psychology of goals. New York, NY: Guilford Press.
  • Natarajan, S., Kunapuli, G., Judah, K., Tadepalli, P., Kersting, K., & Shavlik, J. (2010). Multi-agent inverse reinforcement learning. In S. Draghici, T. Khoshgoftaar, V. Palade, W. Pedrycz, M. Wani, & X. Zhu (Eds.), The ninth international conference on machine learning and applications (pp. 395–400). Los Alamitos, CA: IEEE Computer Society. doi:10.1109/ICMLA.2010.65
  • Ng, A. Y., & Russell, S. (2000). Algorithms for inverse reinforcement learning. In P. Langley (Ed.), Proceedings of the 17th international conference on machine learning (ICML) (pp. 663–670). San Francisco: Morgan Kaufmann.
  • Okada, K., Rong, F., Venezia, J., Matchin, W., Hsieh, I., Saberi, K., … Hickok, G. (2010). Hierarchical organization of human auditory cortex: Evidence from acoustic invariance in the response to intelligible speech. Cerebral Cortex, 20, 2486–2495. doi:10.1093/cercor/bhp318
  • Omohundro, S. (2008). The basic AI drives. In P. Wang, B. Goertzel, & S. Franklin (Eds.), Proceedings of the first AGI conference, 171, Frontiers in artificial intelligence and applications (pp. 483–492). Amsterdam: IOS Press.
  • O’Reilly, R. C. (2006). Biologically based computational models of high-level cognition. Science, 314, 91–94.10.1126/science.1127242
  • O’Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketz, N. (2011). Complementary learning systems. Cognitive Science, 38, 1229–1248.10.1111/cogs.2014.38.issue-6
  • O’Reilly, R. C., Hazy, T. E., & Herd, S. A. (2016). The Leabra cognitive architecture: How to play 20 principles with nature and win! In S. Chipman (Ed.), Oxford handbook of cognitive science (pp. 91–115). Oxford: Oxford University Press.
  • Piaget, J. (1952). The origins of intelligence in children. (M. Cook, Trans.). New York, NY: International University Press.10.1037/11494-000
  • Pritzel, A., Uria, B., Srinivasan, S., Puigdomenech, A., Vinyals, O., Hassabis, D., … Blundell, C. (2017). Neural episodic control. arXiv:1703.01988.
  • Redgrave, P., Gurney, K., Stafford, T., Thirkettle, M., & Lewis, J. (2013). The role of the basal ganglia in discovering novel actions. In G. Baldassarre & M. Mirolli (Eds.), Intrinsically motivated learning in natural and artificial systems (pp. 129–150). Berlin: Springer.10.1007/978-3-642-32375-1
  • Riesenhuber, M., & Poggio, T. (2002). Neural mechanisms of object recognition. Current Opinion in Neurobiology, 12, 162–168.10.1016/S0959-4388(02)00304-5
  • Ryan, R. M. (2012). The Oxford handbook of human motivation. New York, NY: Oxford University Press.10.1093/oxfordhb/9780195399820.001.0001
  • Sandberg, A. (2014). Ethics of brain emulations. Journal of Experimental and Theoretical Artificial Intelligence, 26, 439–457. doi:10.1080/0952813X.2014.895113
  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.10.1016/j.neunet.2014.09.003
  • Seamans, J. K., & Robbins, T. W. (2010). Dopamine modulation of the prefrontal cortex and cognitive function. In K. A. Neve (Ed.), The dopamine receptors (2nd ed., pp. 373–398). New York, NY: Humana Press. doi:10.1007/978-1-60327-333-6_14
  • Shaver, P. R., Segev, M., & Mikulincer, M. (2011). A behavioral systems perspective on power and aggression. In P. R. Shaver & M. Mikulincer (Eds.), Human aggression and violence: Causes, manifestations, and consequences (pp. 71–87). Washington, DC: American Psychological Association.10.1037/12346-000
  • Tian, B., Kusmierek, P., & Rauschecker, J. (2013). Analogues of simple and complex cells in rhesus monkey auditory cortex. Proceedings of the National Academy of Sciences, 110, 7892–7897.10.1073/pnas.1221062110
  • Tomasello, M. (2014). A natural history of human thinking. Cambridge, MA: Harvard University Press.10.4159/9780674726369
  • Turing, A. (1950). Computing machinery and intelligence. Mind, LIX, 433–460.10.1093/mind/LIX.236.433
  • Valenza, E., Simion, F., Cassia, V., & Umilta, C. (1996). Face preference at birth. Journal of Experimental Psychology: Human Perception and Performance, 22, 892–903. doi:10.1037/0096-1523.22.4.892
  • Vygotsky, L. S. (1986). Thought and language. Cambridge, MA: MIT Press.
  • Wallach, W., & Allen, C. (2009). Moral machines (p. 147). Oxford: Oxford University Press.10.1093/acprof:oso/9780195374049.001.0001
  • Yampolskiy, R. V. (2016). Verifier theory and unverifiability. arXiv:1609.00331v2 [cs.AI].
  • Yudkowsky, E. (2008). Artificial intelligence as a positive and negative factor in global risk. In N. Bostrom & M. Ćirković (Eds.), Global catastrophic risks (pp. 308–345). Oxford: Oxford University Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.