185
Views
1
CrossRef citations to date
0
Altmetric
Original Article

On transitions in the behaviour of tabu search algorithm TabuCol for graph colouring

Pages 53-69 | Received 27 Dec 2016, Accepted 05 Jul 2017, Published online: 20 Jul 2017

References

  • Aleliunas, R., Karp, R. M., Lipton, R. J., Lovasz, L., & Rackoff, C. (1979). Random walks, universal traversal sequences, and the complexity of maze problems. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science, FOCS ’79 (pp. 218–223), New York, NY.
  • Auger, A., & Doerr, B. (Eds.). (2011). Theory of randomized search heuristics (Vol. 1). Singapore: World Scientific.
  • Blöchliger, I., & Zufferey, N. (2008). A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & Operations Research, 35, 960–975.
  • Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research, 176, 177–192.
  • Chalupa, D. (2011). Population-based and learning-based metaheuristic algorithms for the graph coloring problem. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (pp. 465–472), New York, NY.
  • Chalupa, D. (2017). An analysis of a simple local search algorithm for graph colouring. ArXiv e-prints, arXiv:1703.05129.
  • Dorne, R., & Hao, J.-K. (1998). A new genetic local search algorithm for graph coloring. In A. E. Eiben, T. Bäck, M. Schoenauer, & H.-P. Schwefel (Eds.), Proceedings of the 5th International Conference on Parallel Problem Solving from Nature: PPSN ’98 (Vol. 1498, pp. 745–754). Berlin: Springer.
  • Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., & Witt, C. (2009). Analyses of simple hybrid algorithms for the vertex cover problem. Evolutionary Computation, 17, 3–19.
  • Galinier, P., Hamiez, J.-P., Hao, J.-K., & Porumbel, D. (2013). Recent advances in graph vertex coloring. In Zelinka, I., Sn{\’a}{\v{s}}el, V., & Abraham, A. (Eds.), Handbook of optimization (pp. 505–528). Berlin: Springer.
  • Galinier, P., & Hao, J. K. (1999). Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization, 3, 379–397.
  • Galinier, P., & Hertz, A. (2006). A survey of local search methods for graph coloring. Computers & Operations Research, 33, 2547–2562.
  • Giaro, K., Kubale, M., & Obszarski, P. (2009). A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints. Discrete Applied Mathematics, 157, 3625–3630.
  • Glass, C. A., & Prügel-Bennett, A. (2003). Genetic algorithm for graph coloring: Exploration of Galinier and Hao’s algorithm. Journal of Combinatorial Optimization, 7, 229–236.
  • Glover, F. (1989). Tabu search -- Part I. INFORMS Journal on Computing, 1, 190–206.
  • Glover, F. (1990). Tabu search -- Part II. INFORMS Journal on Computing, 2, 4–32.
  • Glover, F., & Laguna, M. (2013). Tabu search. In P. M. Pardalos, D. Z. Du, & R. L. Graham (Eds.), Handbook of combinatorial optimization (pp. 3261–3362). New York, NY: Springer.
  • Gualandi, S., & Malucelli, F. (2012). Exact solution of graph coloring problems via constraint programming and column generation. INFORMS Journal on Computing, 24, 81–100.
  • Hao, J. K., & Wu, Q. (2012). Improving the extraction and expansion method for large graph coloring. Discrete Applied Mathematics, 160, 2397–2407.
  • Hawick, K. A., & James, H. A. (2006). Ising model scaling behaviour on z-preserving small-world networks. arXiv preprint cond-mat/0611763.
  • Held, S., Cook, W., & Sewell, E. (2012). Maximum-weight stable sets and safe lower bounds for graph coloring. Mathematical Programming Computation, 4, 363–381.
  • Hertz, A., & de Werra, D. (1987). Using tabu search techniques for graph coloring. Computing, 39, 345–351.
  • Hertz, A., Plumettaz, M., & Zufferey, N. (2008). Variable space search for graph coloring. Discrete Applied Mathematics, 156, 2551–2560.
  • Hoos, H. H., & Stützle, T. (2004). Stochastic local search: Foundations & applications. Amsterdam: Elsevier.
  • Johnson, D. S. (1974). Worst case behavior of graph coloring algorithms. In F. Hoffman (Ed.), Proceedings of the 5th Southeast Conference on Combinatorics, Graph Theory, and Computing (pp. 513–527). Boca Raton, FL: Florida Atlantic University.
  • Johnson, D. S., & Trick, M. (1996). Cliques, coloring, and satisfiability: Second DIMACS implementation challenge. Providence, RI: American Mathematical Society.
  • Karp, R. M. (1972). Reducibility among combinatorial problems. In R. Miller & J. Thatcher (Eds.), Proceedings of a Symposium on the Complexity of Computer Computations (pp. 85–103). New York, NY: Plenum Press.
  • Kratsch, S., & Neumann, F. (2013). Fixed-parameter evolutionary algorithms and the vertex cover problem. Algorithmica, 65, 754–771.
  • Lehre, P. K. (2011). Fitness-levels for non-elitist populations. In N. Krasnogor & P. L. Lanzi (Eds.), Proceedings of the 13th Annual Conference Genetic and Evolutionary Computation, GECCO ’11 (pp. 2075–2082). New York, NY: ACM.
  • Leskovec, J., Lang, K. J., & Mahoney, M. W. (2010). Empirical comparison of algorithms for network community detection. In J. F. M. Rappa, P. Jones, & S. Chakrabarti (Eds.), Proceedings of the 19th International Conference on World Wide Web (pp. 631–640). New York, NY: ACM.
  • Lewis, R., Thompson, J., Mumford, C., & Gillard, J. (2012). A wide-ranging computational comparison of high-performance graph colouring algorithms. Computers & Operations Research, 39, 1933–1950.
  • Lü, Z., & Hao, J. K. (2010). A memetic algorithm for graph coloring. European Journal of Operational Research, 203, 241–250.
  • Malaguti, E., Monaci, M., & Toth, P. (2011). An exact approach for the vertex coloring problem. Discrete Optimization, 8, 174–190.
  • Moalic, L., & Gondran, A. (2015). The new memetic algorithm HEAD for graph coloring: An easy way for managing diversity. In G. Ochoa & F. Chicano (Eds.), Evolutionary computation in combinatorial optimization (Vol. 9026, pp. 173–183). Cham: Springer.
  • Neumann, F., & Witt, C. (2010). Bioinspired computation in combinatorial optimization -- Algorithms and their computational complexity. Berlin: Springer.
  • Porumbel, D. C., Hao, J. K., & Kuntz, P. (2010). A search space “cartography” for guiding graph coloring heuristics. Computers & Operations Research, 37, 769–778.
  • Porumbel, D. C., Hao, J. K., & Kuntz, P. (2013). Informed reactive tabu search for graph coloring. Asia-Pacific Journal of Operational Research, 30, 1350010.
  • Sghir, I., Hao, J.-K., Jaafar, I. B., & Ghédira, K. (2015). A distributed hybrid algorithm for the graph coloring problem. In International Conference on Artificial Evolution (Evolution Artificielle) (pp. 205–218), Cham.
  • Smith, D. H., Hurley, S., & Thiel, S. U. (1998). Improving heuristics for the frequency assignment problem. European Journal of Operational Research, 107, 76–86.
  • Spinrad, J. P., & Vijayan, G. (1985). Worst case analysis of a graph coloring algorithm. Discrete Applied Mathematics, 12, 89–92.
  • Sudholt, D. (2013). A new method for lower bounds on the running time of evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 17, 418–435.
  • Sudholt, D., & Zarges, C. (2010). Analysis of an iterated local search algorithm for vertex coloring. In O. Cheong, K. Y. Chwa, & K. Park (Eds.), Proceedings of the 21st International Symposium on Algorithms and Computation, ISAAC ’10 (Vol. 6506, pp. 340–352). Berlin: Springer.
  • Sutton, A. M., & Neumann, F. (2012). A parameterized runtime analysis of evolutionary algorithms for the Euclidean traveling salesperson problem. In Proceedings of the Twenty-sixth Conference on Artificial Intelligence, AAAI ’12 (pp. 1105–1111). Menlo Park, CA: AAAI Press.
  • Titiloye, O., & Crispin, A. (2011a). Graph coloring with a distributed hybrid quantum annealing algorithm. In KES International Symposium on Agent and Multi-Agent Systems: Technologies and Applications (pp. 553–562), Berlin.
  • Titiloye, O., & Crispin, A. (2011b). Quantum annealing of the graph coloring problem. Discrete Optimization, 8, 376–384.
  • Titiloye, O., & Crispin, A. (2012). Parameter tuning patterns for random graph coloring with quantum annealing. PLoS ONE, 7, e50060.
  • Witt, C. (2012). Analysis of an iterated local search algorithm for vertex cover in sparse random graphs. Theoretical Computer Science, 425, 117–125.
  • Wu, Q., & Hao, J. K. (2012). Coloring large graphs based on independent set extraction. Computers & Operations Research, 39, 283–290.
  • Yu, Y., Yao, X., & Zhou, Z.-H. (2012). On the approximation ability of evolutionary optimization with application to minimum set cover. Artificial Intelligence, 180, 20–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.