316
Views
12
CrossRef citations to date
0
Altmetric
Special Issue Article

Analysing the power of deep learning techniques over the traditional methods using medicare utilisation and provider data

, , , ORCID Icon &
Pages 99-115 | Received 16 Apr 2018, Accepted 30 Aug 2018, Published online: 12 Sep 2018

References

  • Acharya, U. R., Fujita, H., Lih, O. S., Adam, M., Tan, J. H., & Chua, C. K. (2017). Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowledge-Based Systems. doi:10.1016/j.knosys.2017.06.003
  • Acharya, U. R., Fujita, H., Lih, O. S., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Information Sciences. doi:10.1016/j.ins.2017.04.012
  • Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences. doi:10.1016/j.ins.2017.06.027
  • Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M., Gertych, A., & San, T. R. (2017). A deep convolutional neural network model to classify heartbeats. Computers in Biology and Medicine. doi:10.1016/j.compbiomed.2017.08.022
  • Akkus, Z, Galimzianova, A, Hoogi, A, Rubin, D. L, & Erickson, B. J. (2017). Deep learning for brain mri segmentation: state of the art and future directions. Journal Of Digital Imaging, 30(4), 449-459. doi:10.1007/s10278-017-9983-4
  • Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., & Erickson, B. J. (2017). Deep learning for brain MRI segmentation: State of the art and future directions. Journal of Digital Imaging. doi:10.1007/s10278-017-9983-4
  • Bokhari, S. T. F., Sharif, M., Yasmin, M., & Fernandes, S. L. (2018). Fundus image segmentation and feature extraction for the detection of glaucoma: A new approach. Current Medical Imaging Reviews. doi:10.2174/1573405613666170405145913
  • Christodoulidis, S., Anthimopoulos, M., Ebner, L., Christe, A., & Mougiakakou, S. (2017). Multisource transfer learning with convolutional neural networks for lung pattern analysis. IEEE Journal of Biomedical and Health Informatics, 21(1), 76–84.
  • Desai U. et al. (2015) Discrete Cosine Transform Features in Automated Classification of Cardiac Arrhythmia Beats. In: Shetty N., Prasad N., Nalini N. (eds) Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi.
  • Desai, U., Martis, R. J., Acharya, U. R., Nayak, C. G., Seshikala, G., & Shetty, R. K. (2016). Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. Journal of Mechanics in Medicine and Biology, 16, 1640005.
  • Desai, U., Martis, R. J., Nayak, C. G., Sarika, K., & Seshikala, G. (2015). Machine intelligent diagnosis of ECG for arrhythmia classification using DWT, ICA and SVM techniques, India Conference (INDICON), Proceedings of the annual IEEE India conference, doi: 10.1109/INDICON.2015.7443220
  • Desai, U., Martis, R. J., Nayak, C. G., Sheshikala, G., Sarika, K., & Shetty, R. K. (2016). Decision support system for arrhythmia beats using ECG signals with DCT, DWT and EMD methods: A comparative study. Journal of Mechanics in Medicine and Biology, 16, 1640012.
  • Desai, U., Nayak, C. G., & Seshikala, G. An application of EMD technique in detection of tachycardia beats. In Communication and Signal Processing (ICCSP), 2016 International Conference on 2016 Apr 6 (pp. 1420–1424). IEEE.
  • Desai, U., Nayak, C. G., & Seshikala, G. An efficient technique for automated diagnosis of cardiac rhythms using electrocardiogram. In Recent Trends in Electronics, Information & Communication Technology (RTEICT), IEEE International Conference on 2016 May 20 (pp. 5–8), Bengaluru, India. IEEE. DOI:10.1109/RTEICT.2016.7807770.
  • Desai, U., Nayak, C. G., & Seshikala, G. (2017). Application of ensemble classifiers in accurate diagnosis of myocardial ischemia conditions. Progress in Artificial Intelligence, 6(3), 245–253.
  • Desai, U., Nayak, C. G., Seshikala, G., & Martis, R. J. (2017). Automated diagnosis of coronary artery disease using pattern recognition approach. Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 434–437.
  • Desai, U., Nayak, C.G., Seshikala, G., Martis, R.J., & Fernandes, S.L. (2018). Automated Diagnosis Of Tachycardia Beats. In: Satapathy S., Bhateja V., Das S. (eds) Smart Computing and Informatics. Smart Innovation, Systems and Technologies, vol 77. Springer, Singapore. doi:https://doi.org/10.1007/978-981-10-5544-7_41
  • Diehr, P., Yanez, D., Ash, A., Hornbrook, M., & Lin, D. Y. (1999). Methods for analyzing healthcare utilization and costs. Annual Review of Public Health, 20, 125–144.
  • Fernandes, S. L., Chakraborty, B., Gurupur, V. P., & Prabhu, A. (2016). Early skin cancer detection using computer aided diagnosis techniques. Journal of Integrated Design and Process Science, 20(1), 33–43.
  • Fernandes, S. L., Gurupur, V. P., Lin, H., & Martis, R. J. (2017). A novel fusion approach for early lung cancer detection using computer aided diagnosis techniques. Journal of Medical Imaging and Health Informatics, 7(8), 1841–1850.
  • Fernandes, S. L., Gurupur, V. P., Sunder, N. R., & Kadry, S. (2017). A novel nonintrusive decision support approach for heart rate measurement. Pattern Recognition Letters, 94(15), 87–95.
  • Gurupur, V., & Gutierrez, R. (2016). Designing the right framework for healthcare decision support. Journal of Integrated Design and Process Science, 20, 7–32.
  • Gurupur, V., Sakoglu, U., Jain, G. P., & Tanik, U. J. (2014). Semantic requirements sharing approach to develop software systems using concept maps and information entropy: A personal health information system example. Advances in Engineering Software, 70, 25–35.
  • Gurupur, V., & Tanik, M. M. (2012). A system for building clinical research applications using semantic web-based approach. Journal of Medical Systems, 36(1), 53–59.
  • Hannink, J., Kautz, T., Pasluosta, C. F., Gaßmann, K. G., Klucken, J., & Eskofier, B. M. (2017). Sensor-based gait parameter extraction with deep convolutional neural networks. IEEE Journal of Biomedical and Health Informatics, 21(1), 85–93.
  • Hempelmann, C. F., Sakoglu, U., Gurupur, V., & Jampana, S. (2015). An entropy-based evaluation method for knowledge bases of medical information systems. Expert Systems with Applications, 46, 262–273.
  • Jain, V. K., Kumar, S., & Fernandes, S. L. (2017). Extraction of emotions from multilingual text using intelligent text processing and computational linguistics. Journal of Computational Science, 21, 316–326.
  • Khan, M. W., Sharif, M., Yasmin, M., & Fernandes, S. L. (2016). A new approach of cup to disk ratio based glaucoma detection using fundus images. Journal of Integrated Design and Process Science, 20(1), 77–94.
  • Kim, H.-Y. (2014). Analysis of Variance (ANOVA) comparing means of more than two groups. Restorative Dentistry and Endodontics, 39(1), 74–77.
  • Kulkarni, S. A., & Rao, G. R. (2009). Modeling reinforcement learning algorithms for performance analysis. In Proceedings of ICAC3ʹ09 of the International Conference on Advances in Computing, Communication and Control (pp. 35–39), Mumbai, India. doi:10.1145/1523103.1523111.
  • Kumar, A., Kim, J., Lyndon, D., Fulham, M., & Feng, D. (2017). An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE Journal of Biomedical and Health Informatics, 21(1), 31–40.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
  • Lekadir, K., Galimzianova, A., Betriu, À., del Mar Vila, M., Igual, L., Rubin, D. L., … Napel, S. (2017). A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE Journal of Biomedical and Health Informatics, 21(1), 48–55.
  • Liu, X., Oetjen, R. M., Hanney, W. J., Rovito, M., Masaracchio, M., Peterson, R. L., & Dottore, K. (2018). Characteristics of physical therapists serving medicare fee-for-service beneficiaries ( Unpublished manuscript).
  • Malehi, A. S., Pourmotahari, F., & Angali, K. A. (2015). Statistical models for the analysis of skewed healthcare cost data: A simulation study. Health Economics Review, 5. doi:10.1186/s13561-015-0045-7
  • Martis, R. J., Lin, H., Gurupur, V. P., & Fernandes, S. L. (2017). Editorial: Frontiers in development of intelligent applications for medical imaging processing and computer vision. Computers in Biology and Medicine, 89, 549–550.
  • Medicare Provider Utilization and Payment Data: Physician and Other Supplier. (2018, February 26). [Online]. Retrieved from https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier.html
  • Mehrtash, A., Sedghi, A., Ghafoorian, M., Taghipour, M., Tempany, C. M., Wells, W. M., … Fedorov, A. (2017). Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. Proceedings of SPIE–the international society for optical engineering, Orlando, Florida, United States. doi: 10.1117/12.2277123.
  • Naqi, S. M., Sharif, M., Yasmin, M., & Fernandes, S. L. (2018). Lung nodule detection using polygon approximation and hybrid features from lung CT images. Current Medical Imaging Reviews. doi:10.2174/1573405613666170306114320
  • Nasir, A., Liu, X., Gurupur, V., & Qureshi, Z. (2017). Disparities in patient record completeness with respect to the health care utilization project. Health Informatics Journal. doi:10.1177/1460458217716005
  • Nguyen, P., Tran, T., Wickramasinghe, N., & Venkatesh, S. (2017). Deepr: A convolutional net for medical records. IEEE Journal of Biomedical and Health Informatics, 21(1), 22–30.
  • Nimon, K. F., & Oswald, F. L. (2013). Understanding the results of multiple linear regression. Organizational Research Methods, 16(4), 650–674.
  • Pham, T., Tran, T., Phung, D., & Venkatesh, S. (2017). Predicting healthcare trajectories from medical records: A deep learning approach. Journal of Biomedical Informatics, 69, 218–229.
  • Puppala, M., He, T., Chen, S., Ogunti, R., Yu, X., Li, F., … Wong, S. T. C. (2015). METEOR: An enterprise health informatics environment to support evidence-based medicine. IEEE Transactions on Biomedical Engineering, 62(12), 2776–2786.
  • Rajinikanth, V., Satapathy, S. C., Fernandes, S. L., & Nachiappan, S. (2017). Entropy based segmentation of tumor from brain MR images - A study with teaching learning based optimization. Pattern Recognition Letters, 94, 87–95.
  • Ravì, D., Wong, C., Lo, B., & Yang, G. Z. (2017). A deep learning approach to on-node sensor data analytics for mobile or wearable devices. IEEE Journal of Biomedical and Health Informatics, 21(1), 56–64.
  • Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G.-Z. (2017). Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics, 21(1), 4–21.
  • Santana, D. B., Z´Ocalo, Y. A., Ventura, I. F., Arrosa, J. F. T., Florio, L., Lluberas, R., & Armentano, R. L. (2012). Health informatics design for assisted diagnosis of subclinical atherosclerosis, structural, and functional arterial age calculus and patient-specific cardiovascular risk evaluation. IEEE Transactions on Information Technology in Biomedicine, 16(5), 943–951.
  • Shabbira, B., Sharifa, M., Nisara, W., Yasmina, M., & Fernandes, S. L. (2017). Automatic cotton wool spots extraction in retinal images using texture segmentation and Gabor wavelet. Journal of Integrated Design and Process Science, 20(1), 65–76.
  • Shah, J. H., Chen, Z., Sharif, M., Yasmin, M., & Fernandes, S. L. (2017). A novel biomechanics based approach for person re-identification by generating dense color sift salience features. Journal of Mechanics in Medicine and Biology, 17, 1740011.
  • Snee, N. L., & McCormick, K. A. (2004). The case for integrating public health informatics networks. IEEE Engineering in Medicine and Biology Magazine, 23(1), 81-88.
  • Suinesiaputra, A., Gracia, P. P. M., Cowan, B. R., & Young, A. A. (2015). Big heart data: Advancing health informatics through data sharing in cardiovascular imaging. IEEE Journal of Biomedical and Health Informatics, 19(4), 1283–1290.
  • Swasthi, D. U. (2017). Automated detection of cardiac health condition using linear techniques. In Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2017 2nd IEEE International Conference on 2017 May 19 (pp. 890–894). IEEE.
  • Tan, J. H., Acharya, U. R., Bhandary, S. V., Chua, K. C., & Sivaprasad, S. (2017a). Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. Journal of Computational Science. doi:10.1016/j.jocs.2017.02.006
  • Tan, J. H, Fujita, H, Sivaprasad, S, Bhandary, S. V, Rao, A. K, Chua, K. C, & Acharya, U. R. (2017b). Automated segmentation of exudates, hemorrhages, microaneurysms using single convolutional neural network. In Information sciences, 420(c) (pp. 66–76).
  • Taylor, J. G. (Eds). (1993). Mathematical approaches to neural networks (Vol. 51, 1st ed.). North Holland: Elsevier.
  • The Centers for Medicare and Medicaid Services, Office of Enterprise Data and Analytics. (2016). Medicare fee-for-service provider utilization & payment data physician and other supplier public use file: A methodological overview. Available from: https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier.html
  • Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probability and statistics for engineers and scientists (9th ed., pp. 361–363). Boston, USA: Prentice Hall.
  • Weitzel, M., Smith, A., Deugd, S., & Yates, R. (2010). A web 2.0 model for patient-centered health informatics applications. Computer, 43(7), 43–50.
  • Xu, L.-W. (2014). MANOVA for nested designs with unequal cell sizes and unequal cell covariance matrices. Journal of Applied Mathematics. doi:10.1155/201/649202.2014
  • Yu, L., Chen, H., Dou, Q., Qin, J., & Heng, P. A. (2017). Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos. IEEE Journal of Biomedical and Health Informatics, 21(1), 65–75.
  • Zhang, R., Zheng, Y., Mak, T. W., Yu, R., Wong, S. H., Lau, J. Y., & Poon, C. C. (2016). Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE Journal of Biomedical and Health Informatics, 21(1), 41–47.
  • Zhang, R, Zheng, Y, Mak, Tony Wing Chung, Yu, R, Wong, SH, Lau, James Y. W, & Poon, Carmen C. Y. (2017). Automatic detection and classification of colorectal polyps by transferring low-level cnn features from nonmedical domain. Ieee Journal Of Biomedical and Health Informatics, 21(1), 41-47. doi:10.1109/JBHI.2016.2635662
  • Zhang, Y.-T., Zheng, Y.-L., Lin, W.-H., Zhang, H.-Y., & Zhou, X.-L. (2013). Challenges and opportunities in cardiovascular health informatics. IEEE Transactions on Biomedical Engineering, 60(3), 633–642.
  • Zheng, Y.-L., Ding, X.-R., Poon, C. C. Y., Lo, B. P. L. H., Zhang, X.-L., Zhou, G.-Z., … Zhang, Y.-T. (2014). Unobtrusive sensing and wearable devices for health informatics. IEEE Transactions on Biomedical Engineering, 61(5), 1538–1554.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.