424
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Knowledge-oriented task and motion planning for multiple mobile robots

ORCID Icon, &
Pages 137-162 | Received 04 Apr 2017, Accepted 31 Oct 2018, Published online: 30 Nov 2018

References

  • Akbari, A., Gillani, M., & Rosell, J. (2015a). Reasoning-based evaluation of manipulation actions for efficient task planning. In: Reis L., Moreira A., Lima P., Montano L., Muñoz-Martinez V. (Eds.), Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing (vol. 417). Cham: Springer.
  • Akbari, A., Gillani, M., & Rosell, J. (2015b). Task and motion planning using physics-based reasoning. In 2015 IEEE 20th conference on Emerging technologies & factory automation (ETFA) (pp. 1–7). Luxembourg: IEEE.
  • Akbari, A., Gillani, M., & Rosell, J. (2016). Task planning using physics-based heuristics on manipulation actions. In IEEE int. conf. on emerging technologies and factory automation (ETFA). Berlin: IEEE.
  • Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial Intelligence, 90(1), 281–300.
  • Cambon, S., Alami, R., & Gravot, F. (2009). A hybrid approach to intricate motion, manipulation and task planning. The International Journal of Robotics Research, 28(1), 104–126.
  • Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., … Carreras, M. (2015). ROSPlan: Planning in the robot operating system. In Proceedings of the 25th international conference on automated planning and scheduling (ICAPS-15) (pp. 333–341). Jerusalem: ICAPS.
  • Da Silva, R. R., Wu, B., & Lin, H. (2016). Formal design of robot integrated task and motion planning. In 2016 IEEE 55th Conference on Decision and Control (CDC) (pp. 6589-6594). Las Vegas: IEEE.
  • Dantam, N., Kingston, Z. K., Chaudhuri, S., & Kavraki, L. E. (2016). Incremental task and motion planning: A constraint-based approach. In Robotics: Science and systems.
  • de Silva, L., Pandey, A. K., Gharbi, M., & Alami, R. (2013). Towards combining HTN planning and geometric task planning. In RSS workshop on combined robot motion planning and AI planning for practical applications. Berlin. arXiv:1307.1482.
  • Dearden, R., & Burbridge, C. (2014). Manipulation planning using learned symbolic state abstractions. Robotics and Autonomous Systems, 62(3), 355–365.
  • Di Marco, D., Levi, P., Janssen, R., van de Molengraft, R., & Perzylo, A. (2013). A deliberation layer for instantiating robot execution plans from abstract task descriptions. In International conference on automated planning and scheduling: Workshop on planning and robotics. Rome: AAAI press.
  • Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., & Nebel, B. (2012). Semantic attachments for domain-independent planning systems. In Prassler E. et al. (Eds.), Towards service robots for everyday environments. Springer Tracts in Advanced Robotics (vol 76, pp. 99–115). Berlin: Springer.
  • Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., & Uras, T. (2011). Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In International Conference on Robotics and Automation Robotics and Automation (pp. 4575–4581). Shanghai, China: IEEE.
  • Erwin, C. (2013, October). Bullet physics library, Retervied from http://bulletphysics.org.
  • Freitas, A., Schmidt, D., Panisson, A., Meneguzzi, F., Vieira, R., & Bordini, R. H. (2014). Semantic representations of agent plans and planning problem domains. In Dalpiaz, F., Dix, J., & van Riemsdijk, M. B. (Eds.), Engineering multi-agent systems. EMAS 2014. Lecture Notes in Computer Science (vol. 8758, pp. 351–366). Cham: Springer.
  • Galindo, C., Fernández-Madrigal, J.-A., González, J., & Saffiotti, A. (2008). Robot task planning using semantic maps. Robotics and Autonomous Systems, 56(11), 955–966.
  • Garrett, C. R., Lozano-Pérez, T., & Kaelbling, L. P. (2015). FFRob: An efficient heuristic for task and motion planning. In Akin, H., Amato, N., Isler, V., & van der Stappen, A. (Eds.), Algorithmic foundations of robotics XI. Springer Tracts in Advanced Robotics (vol. 107, pp. 179–195). Cham: Springer.
  • Gillani, M., Akbari, A., & Rosell, J. (2016). Physics-based motion planning: Evaluation criteria and benchmarking. In Reis, L., Moreira, A., Lima, P., Montano, L., & Muñoz-Martinez, V. (Eds.), Robot 2015: Second iberian robotics conference. Advances in Intelligent Systems and Computing (vol 417, pp. 43–55). Cham: Springer.
  • Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research, 253–302.
  • Kaelbling, L. P., & Lozano-Pérez, T. (2011). Hierarchical task and motion planning in the now. In IEEE International Conference on Robotics and Automation Robotics and Automation, pp. 1470–1477. Shanghai, China: IEEE.
  • Kimmel, A., Dobson, A., Littlefield, Z., Krontiris, A., Marble, J., & Bekris, K. E. (2012). PRACSYS: An extensible architecture for composing motion controllers and planners. In Noda, I., Ando, N., Brugali, D., & Kuffner, J. J. (Eds.), International conference on simulation, modeling, and programming for autonomous robots. SIMPAR 2012. Lecture Notes in Computer Science (vol 7628, pp. 137–148). Berlin: Springer.
  • Klusch, M., Gerber, A., & Schmidt, M. (2005). Semantic web service composition planning with owls- xplan. In Proceedings of the aaai fall symposium on semantic web and agents, arlington va, USA, AAAI press.
  • Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A., & Karlsson, L. (2014). Efficiently combining task and motion planning using geometric constraints. The International Journal of Robotics Research, 33(14), 1726–1747.
  • Lagriffoul, F., Dimitrov, D., Saffiotti, A., & Karlsson, L. (2012). Constraint propagation on interval bounds for dealing with geometric backtracking. In Intelligent robots and systems (iros), 2012 ieee/rsj international conference on (pp. 957–964). Vilamoura, Portugal: IEEE.
  • LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 20(5), 378–400.
  • Mansouri, M., & Pecora, F. (2016). A robot sets a table: A case for hybrid reasoning with different types of knowledge. Journal of Experimental and Theoretical Artificial Intelligence, 28(5), 801–821.
  • McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., … Wilkins, D. (1998). PDDL—The Planning Domain Definition Language. AIPS-98 Planning Competition Committee.
  • Muhayyuddin, Akbari, A., & Rosell, J. (2018a). κ-pmp: Enhancing physics-based motion planners with knowledge-based reasoning. Journal of Intelligent and Robotic Systems, 91(3–4), 459–477. doi:10.1007/s10846-017-0698-z
  • Muhayyuddin, Akbari, A., & Rosell, J. (2018b). Knowledge-oriented physics-based motion planning for grasping under uncertainty. In Ollero A., Sanfeliu A., Montano L., Lau N., Cardeira C. (Eds.), ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing (vol. 693, pp. 502–515). Cham: Springer.
  • Plaku, E., Kavraki, L., & Vardi, M. (2010, June). Motion planning with dynamics by a synergistic combination of layers of planning. IEEE Transaction on Robotics, 26(3), 469–482.
  • Provine, R., Schlenoff, C., Balakirsky, S., Smith, S., & Uschold, M. (2004). Ontology-based methods for enhancing autonomous vehicle path planning. Robotics and Autonomous Systems, 49(1), 123–133.
  • Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., … Ng, A. Y. (2009). ROS: An open-source robot operating system. Icra Workshop on Open Source Software, 3(p), 5.
  • Rosell, J., PéRez, A., Aliakbar, A., Muhayyuddin, P. L., & García, N. (2014). The Kautham Project: A teaching and research tool for robot motion planning. In IEEE international conference on emerging technologies and factory automation. Barcelona, Spain: IEEE.
  • Russell, S. (2007). Open dynamic engine. Retervied from http://www.ode.org/.
  • Saha, I., Ramaithitima, R., Kumar, V., Pappas, G. J., & Seshia, S. A. (2014). Automated composition of motion primitives for multi-robot systems from safe ltl specifications. In 2014 IEEE/RSJ international conference on Intelligent robots and systems (IROS 2014) (pp. 1525–1532). Chicago, IL: IEEE.
  • Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., & Abbeel, P. (2014). Combined task and motion planning through an extensible planner-independent interface layer. In IEEE international conference on robotics and automation robotics and automation (pp. 639–646). Hong Kong, China: IEEE.
  • Şucan, I. A., & Kavraki, L. E. (2009). Kinodynamic motion planning by interior-exterior cell exploration. In Chirikjian, G. S., Choset, H., Morales, M., & Murphey, T. (Eds.), Algorithmic foundation of Robotics VIII. Springer Tracts in Advanced Robotics (vol 57, pp. 449–464). Berlin: Springer.
  • Şucan, I. A., & Kavraki, L. E. (2012). A sampling-based tree planner for systems with complex dynamics. Robotics, IEEE Transactions On, 28(1), 116–131.
  • Şucan, I. A., Moll, M., & Kavraki, L. E. (2012). The open motion planning library. IEEE Robotics & Automation Magazine, 19(4), 72–82.
  • Stilman, M., & Kuffner, J. J. (2005). Navigation among movable obstacles: Real-time reasoning in complex environments. International Journal of Humanoid Robotics, 2(04), 479–503.
  • Tenorth, M., & Beetz, M. (2009). Knowrob knowledge processing for autonomous personal robots. In International Conference on Intelligent Robots and Systems (pp. 4261–4266). St. Louis, MO: IEEE.
  • Tenorth, M., & Beetz, M. (2012). A unified representation for reasoning about robot actions, processes, and their effects on objects. In IEEE/RSJ International conference on intelligent robots and systems (pp. 1351–1358). Vilamoura, Portugal: IEEE.
  • Wielemaker, J., Schrijvers, T., Triska, M., & Lager, T. (2012). SWI-Prolog. Theory and Practice of Logic Programming, 12(1–2), 67–96.
  • Zickler, S., & Veloso, M. (2009). Efficient physics-based planning: Sampling search via non-deterministic tactics and skills. In 8th int. conf. on autonomous agents and multiagent systems-volume 1 (pp. 27–33). Budapest, Hungary.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.