363
Views
6
CrossRef citations to date
0
Altmetric
Original Article

An improved multi-objective antlion optimization algorithm for the optimal design of the robotic gripper

ORCID Icon, , &
Pages 309-338 | Received 18 Dec 2018, Accepted 11 Jul 2019, Published online: 02 Aug 2019

References

  • Andrzej, O., & Krenich, S. (2000). Optimization of robot gripper parameters using Genetic Algorithms. Vienna: Springer, Vienna. doi:10.1007/978-3-7091-2498-7_14
  • Andrzej, O., & Stanislaw, K. (1999). A new constraint tournament selection method for multicriteria optimization using genetic algorithm. Evolutionary Computation, 2000. Proceedings of the 2000 Congress on (Volume:1), 501–508.
  • Angira, R., & Babu, B. V. (2006). Performance of modified differential evolution for optimal design of complex and non-linear chemical processes. Journal of Experimental and Theoretical Artificial Intelligence, 18(4), 501–512.
  • Coelho, R. F., & Bouillard, P. (2005). A multicriteria evolutionary algorithm for mechanical design optimization with expert rules. International Journal for Numerical Methods in Engineering, 62(4), 516–536.
  • Coello Coello, C. A. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127.
  • Datta, R., & Deb, K. (2011a). Multi-Objective Design and Analysis of Robot Gripper Configurations Using an Evolutionary-Classical Approach. Gecco-2011: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, 1843–1850. doi:10.1145/2001576.2001823
  • Datta, R., & Deb, K. (2011b). Optimizing and Deciphering Design Principles of Robot Gripper Configurations Using an Evolutionary Multi-Objective Optimization Method Gripper- I Configuration De-, KanGAL Rep.
  • Datta, R., Jain, A., & Bhattacharya, B. (2016). A piezoelectric model based multi-objective optimization of robot gripper design. Structural and Multidisciplinary Optimization, 53(3), 453–470.
  • Datta, R., Pradhan, S., & Bhattacharya, B. (2016). Analysis and Design Optimization of a Robotic Gripper Using Multiobjective Genetic Algorithm. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(1), 16–26.
  • Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.
  • Deepak, B. B. V. L., & Parhi, D. R. (2016). Control of an automated mobile manipulator using artificial immune system. Journal of Experimental and Theoretical Artificial Intelligence, 28(1–2), 417–439.
  • Dong, H., Asadi, E., Qiu, C., Dai, J., & Chen, I. M. (2018). Geometric design optimization of an under-actuated tendon-driven robotic gripper. Robotics and Computer-integrated Manufacturing, 50(May), 80–89.
  • Gholaminezhad, I., & Jamali, A. (2015). A multi-objective differential evolution approach based on ε-elimination uniform-diversity for mechanism design. Structural and Multidisciplinary Optimization, 52(5), 861–877.
  • Gholaminezhad, I., Jamali, A., & Assimi, H. (2017). Multi-objective reliability-based robust design optimization of robot gripper mechanism with probabilistically uncertain parameters. Neural Computing and Applications, 28(s1), 659–670.
  • Krenich, S. (2004). Multicriteria design optimization of robot gripper mechanisms. Iutam Symposium on Evolutionary Methods in Mechanics, 117, 207–218.
  • Mahanta, G. B., Deepak, B. B. V. L., & Biswal, B. B. (2018). Design Optimization of Robotic Gripper Links Using Accelerated Particle Swarm Optimization Technique (Vol. 712). Singapore: Springer. doi:10.1007/978-981-10-8228-3
  • Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.
  • Mirjalili, S., Jangir, P., & Saremi, S. (2017). Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 46(1), 79–95.
  • Osyczka, A., & Shi, H. (1995). A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. Structural Optimization, 10(2), 94–99.
  • Ramabalan, S., Saravanan, R., & Balamurugan, C. (2009). Multi-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstacles. The International Journal of Advanced Manufacturing Technology, 41(5–6), 580–594.
  • Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–Learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.
  • Rao, R. V., & Waghmare, G. (2015). Design optimization of robot grippers using teaching-learning-based optimization algorithm. Advanced Robotics, 29(6), 431–447.
  • Saravanan, R., Ramabalan, S., Ebenezer, N. G. R., & Dharmaraja, C. (2009). Evolutionary multi criteria design optimization of robot grippers. Applied Soft Computing Journal, 9(1), 159–172.
  • Sharma, N., Sharma, H., Sharma, A., & Bansal, J. C. (2018). Grasshopper inspired artificial bee colony algorithm for numerical optimisation. Journal of Experimental & Theoretical Artificial Intelligence, 00(00), 1–19.
  • Thiele, L., & Zitzler, E. (1999). Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.
  • Wolpert, D. H., & Macready, W. G. (1997). No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.