281
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A tuned feed-forward deep neural network algorithm for effort estimation

Pages 235-259 | Received 23 Nov 2019, Accepted 30 Dec 2020, Published online: 05 Feb 2021

References

  • Aquino, W., Bunting, G., Miller, S. T., & Walsh, T. F. (2019). A gradient-based optimization approach for the detection of partially connected surfaces using vibration tests. Computer Methods in Applied Mechanics and Engineering, 345(3), 323–335. https://doi.org/10.1016/j.cma.2018.11.002
  • Aravkin, A., Burke, J. V., Chiuso, A., & Pillonetto, G. (2011, December). Convex vs nonconvex approaches for sparse estimation: lasso, multiple kernel learning and hyperparameter lasso. In 2011 50th IEEE Conference on Decision and Control and European Control Conference pp.(156–161). Orlando, FL, USA: IEEE.
  • Azzeh, M., Nassif, A. B., Banitaan, S., & Almasalha, F. (2016). Pareto efficient multi-objective optimization for local tuning of analogy-based estimation. Neural Computing & Applications, 27(8), 2241–2265. https://doi.org/10.1007/s00521-015-2004-y
  • Basgalupp, M. P., Barros, R. C., da silva, T. S., & de carvalho, A. C. 2013, March.Software effort prediction: A hyper-heuristic decision-tree based approach. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp.1109–1116. https://doi.org/10.1145/2480362.2480571
  • Benediktsson, O., Dalcher, D., Reed, K., & Woodman, M. (2003). COCOMO-based effort estimation for iterative and incremental software development. Software Quality Journal, 11(4), 265–281. https://doi.org/10.1023/A:1025809010217
  • Bengio, Y. (2000). Gradient-based optimization of hyperparameters. Neural Computation, 12(8), 1889–1900. https://doi.org/10.1162/089976600300015187
  • Bergstra, J., & Bengio, Y. (2012, February). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(1), 281–305. https://doi.org/10.5555/2188385.2188395
  • Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems, (Vol. 24, pp.2546–2554). https://papers.nips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
  • Burgess, C. J., & Lefley, M. (2001). Can genetic programming improve software effort estimation? A comparative evaluation. Information and Software Technology, 43(14), 863–873. https://doi.org/10.1016/S0950-5849(01)00192-6
  • Chan, S., Treleaven, P., & Capra, L. (2013, October). Continuous hyperparameter optimization for large-scale recommender systems. In 2013 IEEE International Conference on Big Data pp.(350–358). Santa Clara, CA, USA: IEEE.
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
  • Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: an open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences, 85, 142–154. https://doi.org/10.1016/j.cageo.2015.09.015
  • Dam, H. K., Pham, T., Ng, S. W., Tran, T., Grundy, J., Ghose, A., & Kim, C. J. (2018). A deep tree-based model for software defect prediction. arXiv Preprint arXiv:1802.00921. https://arxiv.org/pdf/1802.00921.pdf?source=post_page---------------------------
  • Du, W. L., Ho, D., & Capretz, L. F. (2015). Improving software effort estimation using neuro-fuzzy model with SEER-SEM. arXiv Preprint arXiv:1507.06917. https://arxiv.org/ftp/arxiv/papers/1507/1507.06917.pdf
  • Duan, M., Li, K., & Li, K. (2017). An ensemble cnn2elm for age estimation. IEEE Transactions on Information Forensics and Security, 13(3), 758–772. https://doi.org/10.1109/TIFS.2017.2766583
  • Duan, M., Li, K., Liao, X., Li, K., & Tian, Q. (2019). Features-enhanced multi-attribute estimation with convolutional tensor correlation fusion network. Transactions on Multimedia Computing, Communications, and Applications (TOMM), 15 (3s), 1–23. ACM. doi:10.1145/3355542
  • Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., & Leyton-Brown, K. 2013, December.Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In NIPS Workshop on Bayesian Optimization in Theory and Practice, Vol.10. https://www.cs.ubc.ca/~hoos/Publ/EggEtAl13.pdf
  • El-Fakdi, A., & Carreras, M. (2013). Two-step gradient-based reinforcement learning for underwater robotics behavior learning. Robotics and Autonomous Systems, 61(3), 271–282. https://doi.org/10.1016/j.robot.2012.11.009
  • Ensor, K. B., & Glynn, P. W. (1997). Stochastic optimization via grid search. Lectures in Applied Mathematics-American Mathematical Society, 33, 89–100. https://web.stanford.edu/~glynn/papers/1997/EnsorG97.pdf
  • Falcini, F., Lami, G., & Costanza, A. M. (2017). Deep learning in automotive software. IEEE Software, 34(3), 56–63. https://doi.org/10.1109/MS.2017.79
  • Gu, X., Zhang, H., Zhang, D., & Kim, S. (2016, November). Deep API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering pp.(631–642). Seattle, WA, USA: ACM.
  • Gupta, R., Pal, S., Kanade, A., & Shevade, S. (2017, February). Deepfix: Fixing common c language errors by deep learning. In Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA
  • Han, S., & Dally, B. (2017). Efficient methods and hardware for deep learning. University Lecture. https://stacks.stanford.edu/file/druid:qf934gh3708/EFFICIENT%20METHODS%20AND%20HARDWARE%20FOR%20DEEP%20LEARNING-augmented.pdf
  • He, Y., Qin, Y., Wang, S., Wang, X., & Wang, C. (2019). Electricity consumption probability density forecasting method based on LASSO-quantile regression neural network. Applied Energy, 1, 565–575. https://doi.org/10.1016/j.apenergy.2018.10.061
  • Held, D., Thrun, S., & Savarese, S. 2016, October.Learning to track at 100 fps with deep regression networks. In European Conference on Computer Vision. pp.749–765. Cham. DOI:10.1007/978-3-319-46448-0_45
  • Hellendoorn, V. J., & Devanbu, P. (2017, August). Are deep neural networks the best choice for modeling source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering pp.(763–773).  Paderborn, Germany : ACM.
  • Hjort, N. L., & Glad, I. K. (1995). Nonparametric density estimation with a parametric start. The Annals of Statistics, 23(3), 882–904. https://doi.org/10.1214/aos/1176324627
  • Hosni, M., Idri, A., Abran, A., & Nassif, A. B. (2018). On the value of parameter tuning in heterogeneous ensembles effort estimation. Soft Computing, 22(18), 5977–6010. https://doi.org/10.1007/s00500-017-2945-4
  • Hsu, C. J., & Huang, C. Y. (2011). Comparison of weighted grey relational analysis for software effort estimation. Software Quality Journal, 19(1), 165–200. https://doi.org/10.1007/s11219-010-9110-y
  • Hu, X., Li, G., Xia, X., Lo, D., & Jin, Z. (2018, May). Deep code comment generation. In Proceedings of the 26th Conference on Program Comprehension pp.(200–210).  Gothenburg, Sweden: ACM.
  • Hu, X., Li, G., Xia, X., Lo, D., & Jin, Z. (2019). Deep code comment generation with hybrid lexical and syntactical information. Empirical Software Engineering, 25, 1–39. DOI:10.1007/s10664-019-09730-9
  • Huang, X., Ho, D., Ren, J., & Capretz, L. F. (2007). Improving the COCOMO model using a neuro-fuzzy approach. Applied Soft Computing, 7(1), 29–40. https://doi.org/10.1016/j.asoc.2005.06.007
  • Hubin, A., Storvik, G., & Frommlet, F. (2018). Deep bayesian regression models. arXiv Preprint arXiv:1806.02160. https://arxiv.org/abs/1806.02160
  • Hutter, F., Lücke, J., & Schmidt-Thieme, L. (2015). Beyond manual tuning of hyperparameters. KI-Künstliche Intelligenz, 29(4), 329–337. https://doi.org/10.1007/s13218-015-0381-0
  • Hyndman, R. J., & Fan, Y. (1996). Sample quantiles in statistical packages. The American Statistician, 50(4), 361–365. https://www.jstor.org/stable/pdf/2684934.pdf
  • Idri, A., Abnane, I., & Abran, A. (2018). Evaluating pred (p) and standardized accuracy criteria in software development effort estimation. Journal of Software: Evolution and Process, 30(4), e1925. DOI:10.1002/smr.1925
  • Idri, A., Hosni, M., & Abran, A. (2016). Systematic literature review of ensemble effort estimation. Journal of Systems and Software, 118, 151–175. https://doi.org/10.1016/j.jss.2016.05.016
  • Jiang, W., Ma, H., & Chen, Y. (2012, April). Gradient based fast mode decision algorithm for intra prediction in HEVC. In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet) pp.(1836–1840). Beijing, China: IEEE.
  • Kemerer, C. F. (1987). An empirical validation of software cost estimation models. Communications of the ACM, 30(5), 416–429. https://doi.org/10.1145/22899.22906
  • Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision? In Advances in Neural Information Processing Systems, pp.5574–5584. https://papers.nips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
  • Kocaguneli, E., Menzies, T., & Keung, J. W. (2011). On the value of ensemble effort estimation. IEEE Transactions on Software Engineering, 38(6), 1403–1416. https://doi.org/10.1109/TSE.2011.111
  • Kocaguneli, E., Menzies, T., & Mendes, E. (2015). Transfer learning in effort estimation. Empirical Software Engineering, 20(3), 813–843. https://doi.org/10.1007/s10664-014-9300-5
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. ICommunications of the ACM, , 60(6),84-90. doi.10.1145/3065386
  • Li, C., Bovik, A. C., & Wu, X. (2011). Blind image quality assessment using a general regression neural network. IEEE Transactions on Neural Networks, 22(5), 793–799. https://doi.org/10.1109/TNN.2011.2120620
  • Li, L., Feng, H., Zhuang, W., Meng, N., & Ryder, B. (2017, September). Cclearner: A deep learning-based clone detection approach. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME) pp.(249–260). Shanghai, China: IEEE.
  • Li, X., Jiang, H., Liu, D., Ren, Z., & Li, G. (2018, May). Unsupervised deep bug report summarization. In Proceedings of the 26th Conference on Program Comprehension pp.(144–155). New York, United States: ACM.
  • Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., & Zhong, Y. (2018). VulDeePecker: A deep learning-based system for vulnerability detection. arXiv Preprint arXiv:1801.01681. https://arxiv.org/abs/1801.01681
  • Malgonde, O., & Chari, K. (2019). An ensemble-based model for predicting agile software development effort. Empirical Software Engineering, 24(2), 1017–1055. https://doi.org/10.1007/s10664-018-9647-0
  • Märtens, M., & Izzo, D. (2019, July). Neural network architecture search with differentiable cartesian genetic programming for regression. In Proceedings of the Genetic and Evolutionary Computation Conference Companion pp.(181–182). Prague, Czech Republic.
  • Mensah, S., Keung, J., MacDonell, S. G., Bosu, M. F., & Bennin, K. E. (2018). Investigating the significance of the Bellwether effect to improve software effort prediction: Further empirical study. IEEE Transactions on Reliability, 67(3), 1176–1198. https://doi.org/10.1109/TR.2018.2839718
  • Minku, L. L. (2019). A novel online supervised hyperparameter tuning procedure applied to cross-company software effort estimation. Empirical Software Engineering, 24, 1–52. DOI:10.1007/s10664-019-09686-w
  • Nassif, A. B., Azzeh, M., Capretz, L. F., & Ho, D. (2016). Neural network models for software development effort estimation: A comparative study. Neural Computing & Applications, 27(8), 2369–2381. https://doi.org/10.1007/s00521-015-2127-1
  • Paquette, C., Lin, H., Drusvyatskiy, D., Mairal, J., & Harchaoui, Z. (2017). Catalyst acceleration for gradient-based non-convex optimization. arXiv Preprint arXiv:1703.10993. https://arxiv.org/abs/1703.10993
  • Pradel, M., & Sen, K. (2018). DeepBugs: A learning approach to name-based bug detection. Proceedings of the ACM on Programming Languages, 2(OOPSLA), 147. Tucson, Arizona, USA.
  • Qian, X., & Dougherty, E. R. (2016). Bayesian regression with network prior: optimal bayesian filtering perspective. IEEE Transactions on Signal Processing, 64(23), 6243–6253. https://doi.org/10.1109/TSP.2016.2605072
  • Sarro, F., & Petrozziello, A. (2018). Linear programming as a baseline for software effort estimation. ACM Transactions on Software Engineering and Methodology (TOSEM), 27(3), 12. https://doi.org/10.1145/3234940
  • Sengupta, B., Friston, K. J., & Penny, W. D. (2016). Gradient-based MCMC samplers for dynamic causal modelling. NeuroImage, 125, 1107–1118. https://doi.org/10.1016/j.neuroimage.2015.07.043
  • Song, L., Minku, L. L., & Yao, X. (2018, October). A novel automated approach for software effort estimation based on data augmentation. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering pp.(468–479). Lake Buena Vista, FL, USA
  • Song, L., Minku, L. L., & Yao, X. (2013, October). The impact of parameter tuning on software effort estimation using learning machines. In Proceedings of the 9th international conference on predictive models in software engineering p.(9). Baltimore, Maryland, USA: ACM.
  • Štrumbelj, E. (2017). Bayesian Lasso and multinomial logistic regression on GPU. PloS One, 12(6), e0180343. https://doi.org/10.1371/journal.pone.0180343
  • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010, December). Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11(12), 3371–3408. https://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf?source=post_page---------------------------
  • Vono, M., Dobigeon, N., & Chainais, P. (2018, September). Sparse bayesian binary logistic regression using the split-and-augmented gibbs sampler. In 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) pp.(1–6). Aalborg, Denmark: IEEE.
  • White, M., Tufano, M., Martinez, M., Monperrus, M., & Poshyvanyk, D. (2019, February). Sorting and transforming program repair ingredients via deep learning code similarities. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER) pp.(479–490). Hangzhou, China: IEEE.
  • White, M., Tufano, M., Vendome, C., & Poshyvanyk, D. (2016, August). Deep learning code fragments for code clone detection. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering pp.(87–98). Singapore: ACM.
  • White, M., Vendome, C., Linares-Vásquez, M., & Poshyvanyk, D. (2015, May). Toward deep learning software repositories. In Proceedings of the 12th Working Conference on Mining Software Repositories pp.(334–345). Florence, Italy : IEEE Press.
  • Xia, T., Krishna, R., Chen, J., Mathew, G., Shen, X., & Menzies, T. (2018). Hyperparameter optimization for effort estimation. arXiv Preprint arXiv:1805.00336. https://arxiv.org/abs/1805.00336
  • Xiaomeng, W., Tao, Z., Runpu, W., Wei, X., & Changyu, H. (2018, August). CPGVA: Code property graph based vulnerability analysis by deep learning. In 2018 10th International Conference on Advanced Infocomm Technology (ICAIT) pp.(184–188). Stockholm, Sweden: IEEE.
  • Yamada, S., Hishitani, J., & Osaki, S. (1993). Software-reliability growth with a Weibull test-effort: A model and application. IEEE Transactions on Reliability, 42(1), 100–106. https://doi.org/10.1109/24.210278
  • Yang, J., & Ma, J. (2019). Feed-forward neural network training using sparse representation. Expert Systems with Applications, 116, 255–264. https://doi.org/10.1016/j.eswa.2018.08.038
  • Yin, B., Wu, M., Cavallaro, J. R., & Studer, C. (2014, December). Conjugate gradient-based soft-output detection and precoding in massive MIMO systems. In 2014 IEEE Global Communications Conference pp.(3696–3701). Austin, TX, USA: IEEE.
  • Zhan, H., Gomes, G., Li, X. S., Madduri, K., & Wu, K. (2018). Efficient online hyperparameter optimization for kernel ridge regression with applications to traffic time series prediction. arXiv Preprint arXiv:1811.00620. https://arxiv.org/abs/1811.00620
  • Zhang, W., Yang, Y., & Wang, Q. (2015). Using bayesian regression and EM algorithm with missing handling for software effort prediction. Information and Software Technology, 58, 58–70. https://doi.org/10.1016/j.infsof.2014.10.005
  • Zhang, Z., Lai, Z., Xu, Y., Shao, L., Wu, J., & Xie, G. S. (2017). Discriminative elastic-net regularized linear regression. IEEE Transactions on Image Processing, 26(3), 1466–1481. https://doi.org/10.1109/TIP.2017.2651396

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.