106
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Improving the performance of deep learning-based classification when a sample has various appearances

, , , &
Pages 235-256 | Received 11 Nov 2020, Accepted 16 Jun 2022, Published online: 26 Jun 2022

References

  • Abdelwahab, O., & Elmaghraby, A. (2018). Deep learning based vs. markov chain based text generation for cross domain adaptation for sentiment classification. 2018 IEEE International Conference on Information Reuse and Integration (IRI), 1(1), 252–255. https://doi.org/10.1109/IRI.2018.00046
  • Assa, A., & Plataniotis, K. N. (2018). Similarity-based multiple model adaptive estimation. IEEE Access, 6(1), 36632–36644. https://doi.org/10.1109/ACCESS.2018.2853572
  • Baehr, B. (2012). Cats and Dogs. IEEE Conference on Computer Vision & Pattern Recognition, 1(1), 3498–3505. https://doi.org/10.1109/CVPR.2012.6248092
  • Bharti, R., Saini, D., & Malik, R. (2021). A novel approach for hyper spectral images using transfer learning. IOP Conference Series: Materials Science and Engineering, 1022(1), 012120–012130. https://doi.org/10.1088/1757-899X/1022/1/012120
  • Blaivas, L., & Blaivas, M. (2020). Are convolutional neural networks trained on Imagenet images wearing rose〤olored glasses? Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine, 40(2), 377–383. https://doi.org/10.1002/jum.15413
  • Bloisi, D. D., Iocchi, L., Pennisi, A., & Tombolini, L. (2015). ARGOS-Venice boat classification. IEEE International Conference on Advanced Video & Signal Based Surveillance, 1(1), 1–6. https://doi.org/10.1109/AVSS.2015.7301727
  • Cai, B., Liu, Y., & Xie, M. (2017). A dynamic-Bayesian-network-based fault diagnosis methodology considering transient and intermittent faults. IEEE Transactions on Automation Ence & Engineering, 14(1), 276–285. https://doi.org/10.1109/TASE.2016.2574875
  • Cai, B., Shao, X., Liu, Y., Kong, X., Wang, H., Xu, H., & Ge, W. (2020). Remaining useful life estimation of structure systems under the influence of multiple causes: Subsea pipelines as a case study. IEEE Transactions on Industrial Electronics, 67(7), 5737–5747. https://doi.org/10.1109/TIE.2019.2931491
  • Cavallaro, G., Bazi, Y., Melgani, F., & Riedel, M. (2019). Multi-scale convolutional SVM networks for multi-class classification problems of remote sensing images. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 1(1), 875–878. https://doi.org/10.1109/IGARSS.2019.8899831
  • Chen, X., Li, J., Zhang, Y., Lu, Y., & Liu, S. (2020). Automatic feature extraction in x-ray image based on deep learning approach for determination of bone age. Future Generation Computer Systems, 1(1), 795–801. https://doi.org/10.1016/j.future.2019.10.032
  • Dai, D., Han, L., Yang, T., & Zhang, T. (2014). Bayesian model averaging with exponentiated least square loss. IEEE Transactions on Information Theory, 64(1), 3331–3345. https://doi.org/10.1109/TIT.2018.2805903
  • Dai, G., Zhou, J., Huang, J., & Wang, N. (2020). Hs-cnn: A cnn with hybrid convolution scale for eeg motor imagery classification. Journal of Neural Engineering, 17(1), 0160251–01602511. https://doi.org/10.1088/1741-2552/ab405f
  • Deng, J., Dong, W., Socher, R., Li, L. J., & Li, F. F. (2009). ImageNet: A large-scale hierarchical image database. 2009 IEEE computer society conference on computer vision and pattern recognition, 248–255. https://doi.org/10.1109/CVPR.2009.5206848
  • Dong, Z., Wu, Y., Pei, M., & Jia, Y. (2015). Vehicle type classification using a semisupervised convolutional neural network. IEEE Transactions on Intelligent Transportation Systems, 16(4), 2247–2256. https://doi.org/10.1109/TITS.2015.2402438
  • Feng, X., Gao, X., & Luo, L. (2021). X-sdd: A new benchmark for hot rolled steel strip surface defects detection. Symmetry, 13(4), 706–715. https://doi.org/10.3390/sym13040706
  • Gao, Z., Han, T. T., Zhu, L., Zhang, H., & Wang, Y. (2018). Exploring the cross-domain action recognition problem by deep feature learning and cross-domain learning. IEEE Access, 6(1), 68989–69008. https://doi.org/10.1109/ACCESS.2018.2878313
  • Gidaris, S., & Komodakis, N. (2018). Dynamic few-shot visual learning without forgetting. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1(1), 367–4375. https://doi.org/10.1109/CVPR.2018.00459
  • Goyal, T. (2020). Comparative study of various convolutional neural networks on cifar-10. International Journal for Modern Trends in Science and Technology, 6(12), 402–406. https://doi.org/10.46501/IJMTST061276
  • Hastomo, W., Karno, A., Kalbuana, N., Meiriki, A., & Sutarno. (2021). Characteristic parameters of epoch deep learning to predict covid-19 data in Indonesia. Journal of Physics. Conference Series, 1933(1), 012050–012055. https://doi.org/10.1088/1742-6596/1933/1/012050
  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: surpassing human-level performance on imagenet classification. CVPR, 1(1), 1026–1034. https://doi.org/10.1109/ICCV.2015.123
  • Helber, P., Bischke, B., Dengel, A., & Borth, D. (2017). Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(1), 2217–2226. https://doi.org/10.1109/JSTARS.2019.2918242
  • Helber, P., Bischke, B., Dengel, A., & Borth, D. (2018). Introducing EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE International Geoscience and Remote Sensing Symposium (IGARSS-2018), 1(1), 204–207. https://doi.org/10.1109/IGARSS.2018.8519248
  • Huang, S., Wang, J., Wang, D., Zhang, M., & You, H. (2018). A thread-saving schedule with graph analysis for parallel deep learning applications on embedded systems. 2018 IEEE International Conference on Smart Cloud, 1(1), 111–115. https://doi.org/10.1109/IGARSS.2018.8519248
  • Hwang, K. B., & Zhang, B. T. (2005). Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 35(6), 1302–1310. https://doi.org/10.1109/TSMCB.2005.850162
  • Jin, X., & Kim, H. N. (2020). Parallel deep learning detection network in the MIMO channel. IEEE Communications Letters, 24(1), 126–130. https://doi.org/10.1109/LCOMM.2019.2950201
  • Jin, G., Hu, Y., Jiao, Y., Wen, J., & Song, Q. (2021). Improving the performance of deep learning model-based classification by the analysis of local probability. Complexity, 2021(3), 1–11. https://doi.org/10.1155/2021/5534385
  • Lee, Y., Hwang, J. W., Lee, S., Bae, Y., & Park, J. (2019). An energy and GPU- computation efficient backbone network for real-time object detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1(1), 752–760. https://doi.org/10.1109/CVPRW.2019.00103
  • Lim, G., Cheng, Y., Hsu, W., & Lee, M. L. (2016). Integrated optic disc and cup segmentation with deep learning. IEEE International Conference on Tools with Artificial Intelligence, 1(1), 162–169. https://doi.org/10.1109/ICTAI.2015.36
  • Lin, P. C., Sun, M. K., Kung, C. K., & Chiueh, T. D. (2019). Floatsd: A new weight representation and associated update method for efficient convolutional neural network training. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(99), 267–279. https://doi.org/10.1109/JETCAS.2019.2911999
  • Liu, B. (2020). Data-driven model set design for model averaged particle filter. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1(1), 5835–5839. https://doi.org/10.1109/ICASSP40776.2020.9053480
  • Liu, Y., Qin, H., Zhang, Z., Pei, S., Jiang, Z., Feng, Z., & Zhou, J. (2020). Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model. Applied Energy, 260(15), 1142–1159. https://doi.org/10.1016/j.apenergy.2019.114259
  • Liu, Z., Wu, J., Fu, L., Majeed, Y., Cui, Y., Li, R., & Cui, Y. (2020). Improved kiwifruit detection using pre-trained vgg16 with rgb and nir information fusion. IEEE Access, 8(1), 2327–2336. https://doi.org/10.1109/ACCESS.2019.2962513
  • Mash, C., Quinn, P. C., Dobson, V., & Narter, D. B. (2010). Global influences on the development of spatial and object perceptual categorization abilities: Evidence from preterm infants. Developmental Science, 1(1), 84–102. https://doi.org/10.1111/1467-7687.00017
  • Meloni, A., Ripoli, A., Positano, V., & Landini, L. (2009). Mutual information preconditioning improves structure learning of Bayesian networks from medical databases. IEEE Transactions on Information Technology in Biomedicine, 13(6), 984–989. https://doi.org/10.1109/TITB.2009.2026273
  • Mohamed, S., & Karim, A. (2020). Application of Bayesian classifier to magnetic and gamma ray spectrometry data for targeting hydrocarbon microseepages. Journal of Applied Geo- Physics, 181(1), 104–145. https://doi.org/10.1016/j.jappgeo.2020.104145
  • Nash, C., Karve, P., Adams, D., Mahadevan, S., & Thorne, G. (2020). Real-time cure monitoring of fiber-reinforced polymer composites using infrared thermography and recursive Bayesian filtering. Composites Part B Engineering, 198(3), 108241–108254. https://doi.org/10.1016/j.compositesb.2020.108241
  • Oyedotun, O. K., Shabayek, A., Aouada, D., & Ottersten, B. (2020). Deep network compression with teacher latent subspace learning and lasso. Applied Intelligence, 51(1), 834–853. https://doi.org/10.1007/s10489-020-01858-2
  • Palaniappan, S. K., Akshay, S., Liu, B., Genest, B., & Thiagarajan, P. S. (2012). A hybrid factored frontier algorithm for dynamic Bayesian networks with a biopathways application. IEEE/ACM Transactions on Computational Biology & Bioinformatics, 9(5), 1352–1365. https://doi.org/10.1109/TCBB.2012.60
  • Rasool, R. U., Ashraf, U., Ahmed, K., Wang, H., Rafique, W., & Anwar, Z. (2019). Cyberpulse: A machine learning based link flooding attack mitigation system for software defined networks. IEEE Access, 7(1), 34885–34899. https://doi.org/10.1109/ACCESS.2019.2904236
  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2014). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(1), 211–252. https://doi.org/10.1007/s11263-015-0816-y
  • Su, J., Vargas, D. V., & Kouichi, S. (2017). One pixel attack for fooling deep neural networks. IEEE Transactions on Evolutionary Computation, 23(5), 828–841. https://doi.org/10.1109/TEVC.2019.2890858
  • Tasci, E., Uluturk, C., & Ugur, A. (2021). A voting-based ensemble deep learning method focusing on image augmentation and preprocessing variations for tuberculosis detection. Neural Computing & Applications, 3(22), 15541–15555. https://doi.org/10.1007/s00521-021-06177-2
  • Todd, Y., Hinklejacob, D., KannanRamakrishnan, RamanathanArvind, Kannan, R., & Ramanathan, A. (2020). Distributed Bayesian optimization of deep reinforcement learning algorithms. Journal of Parallel and Distributed Computing, 139(1), 43–52. https://doi.org/10.1016/j.jpdc.2019.07.008
  • Venkateswara, H., Eusebio, J., Chakraborty, S., & Panchanathan, S. (2017). Deep hashing network for unsupervised domain adaptation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1(1), 5385–5394. https://doi.org/10.1109/CVPR.2017.572
  • Wang, S., Liu, Y., Qing, Y., Wang, C., Yao, R., & Yao, R. (2020). Detection of insulator defects with improved ResNeSt and region proposal network. IEEE Access, 8(1), 184841–184850. https://doi.org/10.1109/ACCESS.2020.3029857
  • Woods, W., & Teuscher, C. (2018). Fast and accurate sparse coding of visual stimuli with a simple, ultralow-energy spiking architecture. IEEE Transactions on Neural Networks & Learning Systems, 30(7), 2173–2187. https://doi.org/10.1109/TNNLS.2018.2878002
  • Wu, J., Yu, Y., Huang, C., & Yu, K. (2015). Deep multiple instance learning for image classification and auto-annotation. Computer Vision & Pattern Recognition, 1(1), 3460–3469. https://doi.org/10.1109/CVPR.2015.7298968
  • Xin, P., & Qiujun, L. (2020). Semantic dependency graph parsing of financial domain questions based on deep learning. Journal of Physics. Conference Series, 1453(1), 012058–012066. https://doi.org/10.1088/1742-6596/1453/1/012058
  • Xue, Q., Zhu, Y., & Wang, J. (2020). Joint distribution estimation and nave Bayes classification under local differential privacy. IEEE Transactions on Emerging Topics in Computing, 9(4), 2053–2063. https://doi.org/10.1109/TETC.2019.2959581
  • Zeeshan, M., Majid, M., Nizami, I. F., Anwar, S. M., Din, I. U., & Khan, M. K. (2018). A newly developed ground truth dataset for visual saliency in videos. IEEE Access, 6(1), 20855–20867. https://doi.org/10.1109/ACCESS.2018.2826562
  • Zhang, N., Donahue, J., Girshick, R., & Darrell, T. (2014). Part-based R-CNNs for fine- grained category detection. European Conference on Computer Vision, 8689( 1), 834–849.
  • Zheng, H., Fu, J., Tao, M., & Luo, J. (2017). Learning multi-attention convolutional neural network for fine-grained image recognition. 2017 IEEE International Conference on Computer Vision (ICCV), 1(1), 5209–5217. https://doi.org/10.1109/ICCV.2017.557
  • Zhu, S., Ngo, C. W., & Wei, X. Y. (2014). Collaborative error reduction for hierarchical classification. Computer Vision and Image Understanding, 124(1), 79–90. https://doi.org/10.1016/j.cviu.2014.03.010
  • Zhu, J., Luo, T., Chen, J., Xia, Y., Liu, M., & Liu, M. (2019). Recursive Bayesian-based approach for online automatic identification of generalized electric load models in a multi-model frame- work. IEEE Access, 7(1), 121145–121155. https://doi.org/10.1109/ACCESS.2019.2938099

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.