65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Classifying random variables based on support vector machine and a neural network scheme

&
Pages 679-702 | Received 02 Jul 2021, Accepted 17 Jul 2022, Published online: 02 Sep 2022

References

  • Abaszade, M., & Effati, S. (2018). Stochastic support vector machine for classifying and regression of random variables. Neural Processing Letters, 48(1), 1–29. https://doi.org/10.1007/s11063-017-9697-0
  • Anguita, D., & Boni, A. (2002). Improved neural network for SVM learning. IEEE Transactions on Neural Networks, 13(5), 1243–1244. https://doi.org/10.1109/TNN.2002.1031958
  • Barnett, N. S., Dragomir, S. S., & Agarwal, R. P. (2002). Some inequalities for probability, expectation, and variance of random variables defined over a finite interval. Computers & Mathematics with Applications, 43(10–11), 1319–1357. https://doi.org/10.1016/S0898-1221(02)00103-7
  • Bazaara, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear programming, theory and algorithms. Wiley.
  • Ben-Tal, A., Bhadra, S., Bhattacharyya, C., & Saketha Nath, J. (2011). Chance constrained uncertain classification via robust optimization. Mathematical Programming, 127(1), 145–173. https://doi.org/10.1007/s10107-010-0415-1
  • Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks Mach Learn 20. 3, 273–297 https://doi.org/10.1007/BF00994018.
  • Effati, S., & Ranjbar, M. (2011). A novel recurrent nonlinear neural network for solving quadratic programming problems. Applied Mathematical Modelling, 35(4), 1688–1695. https://doi.org/10.1016/j.apm.2010.10.001
  • Friesz, T. L., Bernstein, D., Mehta, N. J., Tobin, R. L., & Ganjalizadeh, S. (1994). Day-to-day dynamic network disequilibria and idealized traveler information systems. Operations Research, 42(6), 1120–1136. https://doi.org/10.1287/opre.42.6.1120
  • Gao, J. B., Gunn, S. R., Harris, C. J., & Brown, M. (2002). A probabilistic framework for SVM regression and error bar estimation. Machine Learning, 46(1), 71–89. https://doi.org/10.1023/A:1012494009640
  • Gao, X. B., & Liao, L. Z. (2009). A new projection-based neural network for constrained variational inequalities. IEEE Transactions on Neural Networks, 20(3), 373–388. https://doi.org/10.1109/TNN.2008.2006263
  • Hopfield, J. J., & Tank, D. W. (1986). Computing with neural circuits: A model. Science, 233(4764), 625–633. https://doi.org/10.1126/science.3755256
  • Hu, X., & Zhang, B. (2009). An alternative recurrent neural network for solving variational inequalities and related optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(6), 1640–1645. https://doi.org/10.1109/TSMCB.2009.2025700
  • Hu, X., Sun, C., & Zhang, B. (2010). Design of recurrent neural networks for solving constrained least absolute deviation problems. IEEE Transactions on Neural Networks, 21(7), 1073–1086. https://doi.org/10.1109/TNN.2010.2048123
  • Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126
  • Jinglin, Y., Li, H. X., & Yong, H. (2011). A probabilistic SVM based decision system for pain diagnosis. Expert Systems with Applications, 38(8), 9346–9351. https://doi.org/10.1016/j.eswa.2011.01.106
  • Kalouptsidis, N. (1997). Signal processing systems: Theory and design (Vol. 28). Wiley-Interscience.
  • Kennedy, M. P., & Chua, L. O. (1988). Neural networks for nonlinear programming. IEEE Transactions on Circuits and Systems, 35(5), 554–562. https://doi.org/10.1109/31.1783
  • Lanckriet, G. R., Ghaoui, L. E., Bhattacharyya, C., & Jordan, M. I. (2002). A robust minimax approach to classification. Journal of Machine Learning Research, 3(Dec), 555–582 doi:10.1162/153244303321897726.
  • Le Thi, H. A., Vo, X. T., & Dinh, T. P. (2014). Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms. Neural Networks, 59, 36–50. https://doi.org/10.1016/j.neunet.2014.06.011
  • Li, H. X., Yang, J. L., Zhang, G., & Fan, B. (2013). Probabilistic support vector machines for classification of noise affected data. Information Sciences, 221, 60–71. https://doi.org/10.1016/j.ins.2012.09.041
  • Lillo, W. E., Loh, M. H., Hui, S., & Zak, S. H. (1993). On solving constrained optimization problems with neural networks: A penalty method approach. IEEE Transactions on Neural Networks, 4(6), 931–940. https://doi.org/10.1109/72.286888
  • Liu, O., & Zhao, Y., April (2013). A continuous-time recurrent neural network for real-time support vector regression. In 2013 IEEE symposium on computational intelligence in control and automation (CICA) (pp. 189–193). IEEE.
  • Lobo, M. S., Vandenberghe, L., Boyd, S., & Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and Its Applications, 284(1–3), 193–228. https://doi.org/10.1016/S0024-3795(98)10032-0
  • Mehrotra, S. (1992). On the implementation of a primal-dual interior point method. SIAM Journal on Optimization, 2(4), 575–601. https://doi.org/10.1137/0802028
  • Miller, R. K., & Michel, A. N. (1982). Ordinary Differential Equations. Academic Press.
  • Nazemi, A. R. (2012). A dynamic system model for solving convex nonlinear optimization problems. Communications in Nonlinear Science & Numerical Simulation, 17(4), 1696–1705. https://doi.org/10.1016/j.cnsns.2011.08.035
  • Nazemi, A. (2013). Solving general convex nonlinear optimization problems by an efficient neurodynamic model. Engineering Applications of Artificial Intelligence, 26(2), 685–696. https://doi.org/10.1016/j.engappai.2012.09.011
  • Nazemi, A., & Nazemi, M. (2014). A gradient-based neural network method for solving strictly convex quadratic programming problems. Cognitive Computation, 6(3), 484–495. https://doi.org/10.1007/s12559-014-9249-0
  • Nazemi, A. (2014). A neural network model for solving convex quadratic programming problems with some applications. Engineering Applications of Artificial Intelligence, 32, 54–62. https://doi.org/10.1016/j.engappai.2014.02.014
  • Nazemi, A. (2018). A capable neural network framework for solving degenerate quadratic optimization problems with an application in image fusion. Neural Processing Letters, 47(1), 167–192. https://doi.org/10.1007/s11063-017-9640-4
  • Nazemi, A. (2019). A new collaborate neuro-dynamic framework for solving convex second order cone programming problems with an application in multi-fingered robotic hands. Applied Intelligence, 49(10), 3512–3523. https://doi.org/10.1007/s10489-019-01462-z
  • Park, W. J., & Kil, R. M. (2009). Pattern classification with class probability output network. IEEE Transactions on Neural Networks, 20(10), 1659–1673. https://doi.org/10.1109/TNN.2009.2029103
  • Perfetti, R., & Ricci, E. (2006). Analog neural network for support vector machine learning. IEEE Transactions on Neural Networks, 17(4), 1085–1091. https://doi.org/10.1109/TNN.2006.875967
  • Shivaswamy, P., Bhattacharyya, C., & Smola, A. (2006). Second order cone programming approaches for handling missing and uncertain data http://jmlr.org/papers/v7/shivaswamy06a.html.
  • Sun, Y., Yuan, Y., & Wang, G. (2014). Extreme learning machine for classification over uncertain data. Neurocomputing, 128, 500–506. https://doi.org/10.1016/j.neucom.2013.08.011
  • Tan, Y., Xia, Y., & Wang, J., July (2000). Neural network realization of support vector methods for pattern classification. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (Vol. 6, pp. 411–416). IEEE.
  • Tank, D., & Hopfield, J. I. (1986). Simple neural optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit. IEEE Transactions on Circuits and Systems, 33(5), 533–541. https://doi.org/10.1109/TCS.1986.1085953
  • Vapnik, V. N. (1995). The nature of statistical learning. Theory. Springer-Verlag.
  • Vapnik, V. (1999). The nature of statistical learning theory. Springer science & business media.
  • Xia, Y., & Wang, J. (2004). A one-layer recurrent neural network for support vector machine learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(2), 1261–1269. https://doi.org/10.1109/TSMCB.2003.822955
  • Xia, Y., & Wang, J. (2005). A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks, 16(2), 379–386. https://doi.org/10.1109/TNN.2004.841779
  • Yang, Y., & Cao, J. (2008). A feedback neural network for solving convex constraint optimization problems. Applied Mathematics and Computation, 201(1–2), 340–350. https://doi.org/10.1016/j.amc.2007.12.029
  • Yang, Y., He, Q., & Hu, X. (2012). A compact neural network for training support vector machines. Neurocomputing, 86, 193–198. https://doi.org/10.1016/j.neucom.2012.01.004
  • Yazdi, H. S., Effati, S., & Saberi, Z. (2007). The probabilistic constraints in the support vector machine. Applied Mathematics and Computation, 194(2), 467–479. https://doi.org/10.1016/j.amc.2007.04.109
  • Zhao, Y., & Liu, Q. (2012). Generalized recurrent neural network for ϵ-insensitive support vector regression. Mathematics and Computers in Simulation, 86, 2–9. https://doi.org/10.1016/j.matcom.2012.03.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.