101
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A novel Hybrid Harris hawk sine cosine optimization algorithm for reactive power optimization problem

, ORCID Icon, , &
Pages 901-937 | Received 07 Jun 2021, Accepted 13 Aug 2022, Published online: 13 Sep 2022

References

  • Akbary, P., Ghiasi, M., Pourkheranjani, M. R. R., Alipour, H., & Ghadimi, N. (2017). Extracting appropriate nodal marginal prices for all types of committed reserve. Computational Economics, 53(1), 1–26. https://doi.org/10.1007/s10614-017-9716-2
  • Akbary, P., Ghiasi, M., Pourkheranjani, M. R. R., Alipour, H., & Ghadimi, N. (2017). Extracting Appropriate Nodal Marginal Prices for All Types of Committed Reserve. Computational Economics, 53(1), 1–26. https://doi.org/10.1007/s10614-017-9716-2
  • Alabool, H. M., Alarabiat, D., Abualigah, L., & Heidari, A. A. (2021). Harris hawks optimization: A comprehensive review of recent variants and applications. Neural Computing & Applications, 33(15), 8939–8980. https://doi.org/10.1007/s00521-021-05720-5
  • Bao, X., Jia, H., & Lang, C. (2019). A novel hybrid Harris hawks optimization for color image multilevel thresholding segmentation. IEEE Access, 7, 76529–76546. https://doi.org/10.1109/ACCESS.2019.2921545
  • Ben Jouida, S., & Krichen, S. (2020). A genetic algorithm for supplier selection problem under collaboration opportunities. Journal of Experimental & Theoretical Artificial Intelligence, 1–27. https://doi.org/10.1080/0952813X.2020.1836031
  • Cai, W., Mohammaditab, R., Fathi, G., Wakil, K., Ebadi, A. G., & Ghadimi, N. (2019). Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach. Renewable Energy, 143, 1–8. https://doi.org/10.1016/j.renene.2019.05.008
  • Chalupa, D. (2017). On transitions in the behaviour of tabu search algorithm TabuCol for graph colouring. Journal of Experimental & Theoretical Artificial Intelligence, 30(1), 53–69. https://doi.org/10.1080/0952813X.2017.1354082
  • Chao, W., Xin, W., Gang, Y., Yi-Hui, Z., Li Dan, Z., & Xin, L. (2021). Application of golden section based chaos particle swarm optimization algorithm in distribution network reactive power optimization. Power System Protection and Control, 7, 31–36. https://doi.org/10.7667/j.issn.1674-3415.2012.07.006
  • Cui, H., Guan, Y., Chen, H., & Deng, W. (2021). A novel advancing signal processing method based on coupled multi-stable stochastic resonance for fault detection. Applied Sciences, 11(12), 5385. https://doi.org/10.3390/app11125385
  • Dehghani, M., Ghiasi, M., Niknam, T., Kavousi-Fard, A., Shasadeghi, M., Ghadimi, N., & Taghizadeh-Hesary, F. (2020). Blockchain-Based securing of data exchange in a power transmission system considering congestion management and social welfare. Sustainability, 13(1), 90. https://doi.org/10.3390/su13010090
  • Demiar, J., & Schuurmans, D. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7(2006), 1–30.
  • Deng, W., Shang, S., Cai, X., Zhao, H., Song, Y., & Xu, J. (2021). An improved differential evolution algorithm and its application in optimization problem. Soft Computing, 25(7), 5277–5298. https://doi.org/10.1007/s00500-020-05527-x
  • Deng, W., Xu, J., Gao, X.-Z., & Zhao, H. (2020). An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–10. https://doi.org/10.1109/TSMC.2020.3030792
  • Deng, W., Zhang, X., Zhou, Y., Liu, Y., Zhou, X., Chen, H., & Zhao, H. (2022). An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Information Sciences, 585, 441–453. https://doi.org/10.1016/j.ins.2021.11.052
  • Digalakis, J. G., & Margaritis, K. G. (2001). On benchmarking functions for genetic algorithms. International Journal of Computer Mathematics, 77(4), 481–506. https://doi.org/10.1080/00207160108805080
  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29–41. https://doi.org/10.1109/3477.484436
  • Dréo, J. (Ed.). (2006). Metaheuristics for hard optimization: Methods and case studies. springer.
  • Elkadeem, M. R., Abd Elaziz, M., Ullah, Z., Wang, S., & Sharshir, S. W. (2019). Optimal planning of renewable energy-integrated distribution system considering uncertainties. IEEE Access, 7, 164887–164907. https://doi.org/10.1109/ACCESS.2019.2947308
  • Fachin, J. M., Reynoso-Meza, G., Mariani, V. C., & dos Santos Coelho, L. (2021). Self-Adaptive differential evolution applied to combustion engine calibration. Soft Computing, 25(1), 109–135. https://doi.org/10.1007/s00500-020-05469-4
  • Feng, Z. K., Liu, S., Niu, W. J., Li, B. J., & Miao, S. M. (2020). A modified sine cosine algorithm for accurate global optimization of numerical functions and multiple hydropower reservoirs operation. Knowledge-Based Systems, 208, 106461. https://doi.org/10.1016/j.knosys.2020.106461
  • Feng, J., Zhang, J., Zhu, X., & Lian, W. (2017). A novel chaos optimization algorithm. Multimedia Tools and Applications, 76(16), 17405–17436. https://doi.org/10.1007/s11042-016-3907-z
  • Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35. https://doi.org/10.1007/s00366-011-0241-y
  • García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Information Sciences. 180, 2044–2064. https://doi.org/10.1016/j.ins.2009.12.010
  • Ghadimi, N., Akbarimajd, A., Shayeghi, H., & Abedinia, O. (2018). Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy, 161, 130–142. https://doi.org/10.1016/j.energy.2018.07.088
  • Ghasemi, M., Taghizadeh, M., Ghavidel, S., Aghaei, J., & Abbasian, A. (2015). Solving optimal reactive power dispatch problem using a novel teaching-learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, 39, 100–108. https://doi.org/10.1016/j.engappai.2014.12.001
  • Gomes, G. F., da Cunha, S. S., & Ancelotti, A. C. (2019). A sunflower optimization (sfo) algorithm applied to damage identification on laminated composite plates. Engineering with Computers, 35(2), 619–626. https://doi.org/10.1007/s00366-018-0620-8
  • Goswami, S. K., & Basu, S. K. (1992). A new algorithm for the reconfiguration of distribution feeders for loss minimization. IEEE Transactions on Power Delivery, 7(3), 1484–1491. https://doi.org/10.1109/61.141868
  • Guo, Y., Liu, X., & Chen, L. (2021). Improved butterfly optimisation algorithm based on guiding weight and population restart. Journal of Experimental & Theoretical Artificial Intelligence, 33(1), 127–145. https://doi.org/10.1080/0952813X.2020.1725651
  • Gupta, S., & Deep, K. (2019). A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Systems with Applications, 119, 210–230. https://doi.org/10.1016/j.eswa.2018.10.050
  • Gupta, S., Deep, K., Moayedi, H., Foong, L. K., & Assad, A. (2021). Sine cosine grey wolf optimizer to solve engineering design problems. Engineering with Computers, 37(4), 3123–3149. https://doi.org/10.1007/s00366-020-00996-y
  • Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: algorithm and applications. Future Generation Computer Systems, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.028
  • Jiao, S., Chong, G., Huang, C., Hu, H., Wang, M., Heidari, A. A., Chen, H., & Zhao, X. (2020). Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models. Energy, 203, 117804. https://doi.org/10.1016/j.energy.2020.117804
  • Jin, T., Ding, H., Xia, H., & Bao, J. (2021). Reliability index and Asian barrier option pricing formulas of the uncertain fractional first-hitting time model with Caputo type. Chaos, Solitons & Amp; Fractals, 142, 110409. https://doi.org/10.1016/j.chaos.2020.110409
  • Jin, T., Yang, X., Xia, H., & Ding, H. (2021). Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional-order differential equation with caputo type. Fractals, 29(01), 2150012. https://doi.org/10.1142/S0218348X21500122
  • Karimzadeh Parizi, M., Keynia, F., & Khatibi Bardsiri, A. (2020). Woodpecker Mating Algorithm (WMA): A nature-inspired algorithm for solving optimization problems. International Journal of Nonlinear Analysis and Applications, 11(1). https://doi.org/10.22075/ijnaa.2020.4245
  • Karimzadeh Parizi, M., Keynia, F., & Khatibi Bardsiri, A. (2021a). Owma: an improved self-regulatory woodpecker mating algorithm using opposition-based learning and allocation of local memory for solving optimization problems. Journal of Intelligent & Fuzzy Systems, 40(1), 919–946. https://doi.org/10.3233/JIFS-201075
  • Karimzadeh Parizi, M., Keynia, F., & Khatibi Bardsiri, A. (2021b). Woodpecker mating algorithm for optimal economic load dispatch in a power system with conventional generators. International Journal of Industrial Electronics Control and Optimization, 4(2). https://doi.org/10.22111/ieco.2020.35116.1296
  • Kazimipour, B., Li, X., & Qin, A. K. (2014). A review of population initialization techniques for evolutionary algorithms. 2014 IEEE Congress on Evolutionary Computation (CEC), 2585–2592. https://doi.org/10.1109/CEC.2014.6900618
  • Khodaei, H., Hajiali, M., Darvishan, A., Sepehr, M., & Ghadimi, N. (2018). Fuzzy-Based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming. Applied Thermal Engineering, 137, 395–405. https://doi.org/10.1016/j.applthermaleng.2018.04.008
  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671
  • Kumar, M., Kulkarni, A. J., & Satapathy, S. C. (2018). Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology. Future Generation Computer Systems, 81, 252–272. https://doi.org/10.1016/j.future.2017.10.052
  • Liu, J., Chen, C., Liu, Z., Jermsittiparsert, K., & Ghadimi, N. (2020). An IGDT-based risk-involved optimal bidding strategy for hydrogen storage-based intelligent parking lot of electric vehicles. Journal of Energy Storage, 27, 101057. https://doi.org/10.1016/j.est.2019.101057
  • Mehrpooya, M., Ghadimi, N., Marefati, M., & Ghorbanian, S. A. (2021). Numerical investigation of a new combined energy system includes parabolic dish solar collector, stirling engine and thermoelectric device. International Journal of Energy Research, 45(11), 16436–16455. https://doi.org/10.1002/er.6891
  • Meng, X., Liu, Y., Gao, X., & Zhang, H. (2014). A new bio-inspired algorithm: chicken swarm optimization. In Y. Tan, Y. Shi, & C. A. C. Coello (Eds.), Advances in swarm intelligence (Vol. 8794, pp. 86–94). Springer International Publishing. https://doi.org/10.1007/978-3-319-11857-4_10
  • Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133. https://doi.org/10.1016/j.knosys.2015.12.022
  • Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008
  • Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing & Applications, 27(2), 495–513. https://doi.org/10.1007/s00521-015-1870-7
  • Mir, M., Shafieezadeh, M., Heidari, M. A., & Ghadimi, N. (2020). Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction. Evolving Systems, 11(4), 559–573. https://doi.org/10.1007/s12530-019-09271-y
  • Mirzapour, F., Lakzaei, M., Varamini, G., Teimourian, M., & Ghadimi, N. (2019). A new prediction model of battery and wind-solar output in hybrid power system. Journal of Ambient Intelligence and Humanized Computing, 10(1), 77–87. https://doi.org/10.1007/s12652-017-0600-7
  • Moayedi, H., Abdullahi, M. M., Nguyen, H., & Rashid, A. S. A. (2021). Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils. Engineering with Computers, 37(1), 437–447. https://doi.org/10.1007/s00366-019-00834-w
  • Moayedi, H., Osouli, A., Nguyen, H., & Rashid, A. S. A. (2021). A novel Harris hawks' optimization and k-fold cross-validation predicting slope stability. Engineering with Computers, 37(1), 369–379. https://doi.org/10.1007/s00366-019-00828-8
  • Mohamed, A.-A.-A., Mohamed, Y. S., El-Gaafary, A. A. M., & Hemeida, A. M. (2017). Optimal power flow using moth swarm algorithm. Electric Power Systems Research, 142, 190–206. https://doi.org/10.1016/j.epsr.2016.09.025
  • Parizi, M. K., Keynia, F., & Bardsiri, A. K. (2021). HSCWMA: A new hybrid sca-wma algorithm for solving optimization problems. International Journal of Information Technology & Decision Making, 20(02), 775–808. https://doi.org/10.1142/S0219622021500176
  • Pesaran, H. A. M., Nazari-Heris, M., Mohammadi-Ivatloo, B., & Seyedi, H. (2020). A hybrid genetic particle swarm optimization for distributed generation allocation in power distribution networks. Energy, 209, 118218. https://doi.org/10.1016/j.energy.2020.118218
  • Puspita, F. M., Meitrilova, A., & Yahdin, S. (2020). Mathematical modelling of traveling salesman problem (TSP) by implementing simulated annealing and genetic algorithms. Journal of Physics: Conference Series, 1480, 012029. https://doi.org/10.1088/1742-6596/1480/1/012029
  • Ran, X., Zhou, X., Lei, M., Tepsan, W., & Deng, W. (2021). A novel K-means clustering algorithm with a noise algorithm for capturing urban hotspots. Applied Sciences, 11(23), 11202. https://doi.org/10.3390/app112311202
  • Rezaee Jordehi, A., & Jasni, J. (2013). Parameter selection in particle swarm optimisation: A survey. Journal of Experimental & Theoretical Artificial Intelligence, 25(4), 527–542. https://doi.org/10.1080/0952813X.2013.782348
  • Saeedi, M., Moradi, M., Hosseini, M., Emamifar, A., & Ghadimi, N. (2019). Robust optimization based optimal chiller loading under cooling demand uncertainty. Applied Thermal Engineering, 148, 1081–1091. https://doi.org/10.1016/j.applthermaleng.2018.11.122
  • Sun, G., Li, C., & Deng, L. (2021). An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Computing & Applications, 33(15), 9503–9519. https://doi.org/10.1007/s00521-021-05708-1
  • Sun, J., Wu, X., Palade, V., Fang, W., & Shi, Y. (2015). Random drift particle swarm optimization algorithm: convergence analysis and parameter selection. Machine Learning, 101(1–3), 345–376. https://doi.org/10.1007/s10994-015-5522-z
  • Wang, J. F., & Chu, K. Y. (2012). An application of genetic algorithms for the flexible job-shop scheduling problem. International Journal of Advancements in Computing Technology, 4(3), 271–278. https://doi.org/10.4156/ijact.vol4.issue3.34
  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893
  • Wu, Q. H., & Ma, J. T. (2002). Power system optimal reactive power dispatch using evolutionary programming. IEEE Transactions on Power Systems, 10(3), 1243–1249. https://doi.org/10.1109/59.466531
  • Wu, E. Q., Zhou, M., Hu, D., Zhu, L., Tang, Z., Qiu, X.-Y., Deng, P.-Y., Zhu, L.-M., & Ren, H. (2021). Self-paced dynamic infinite mixture model for fatigue evaluation of pilots’ brains. IEEE Transactions on Cybernetics, 1–16. https://doi.org/10.1109/TCYB.2020.3033005
  • Wu, E. Q., Zhu, L.-M., Zhang, W.-M., Deng, P.-Y., Jia, B., Chen, S.-D., Ren, H., & Zhou, G.-R. (2020). Novel nonlinear approach for real-time fatigue EEG data: an infinitely warped model of weighted permutation entropy. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2437–2448. https://doi.org/10.1109/TITS.2019.2918438
  • Yang, Z., Ghadamyari, M., Khorramdel, H., Seyed Alizadeh, S. M., Pirouzi, S., Milani, M., Banihashemi, F., & Ghadimi, N. (2021). Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems. Renewable and Sustainable Energy Reviews, 148, 111295. https://doi.org/10.1016/j.rser.2021.111295
  • Yao, X., Liu, Y., & Lin, G. M. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 3(2), 82–102. https://doi.org/10.1109/4235.771163
  • Yao, Q., Zhu, X., & Kuo, W. (2011). Heuristics for component assignment problems based on the birnbaum importance. LIE Transactions, 43(9), 633–646. https://doi.org/10.1080/0740817X.2010.532856
  • Yıldız, A. R., Yıldız, B. S., Sait, S. M., & Li, X. (2019). The Harris hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations. Materials Testing, 61(8), 725–733. https://doi.org/10.3139/120.111377
  • Zhang, Z.-H., Min, F., Chen, G.-S., Shen, S.-P., Wen, Z.-C., & Zhou, X.-B. (2021). Tri-partition state alphabet-based sequential pattern for multivariate time series. Cognitive Computation. https://doi.org/10.1007/s12559-021-09871-4
  • Zhao, H., Liu, H., Jin, Y., Dang, X., & Deng, W. (2021). Feature extraction for data-driven remaining useful life prediction of rolling bearings. IEEETransactions on Instrumentation and Measurement, 70, 1–10. https://doi.org/10.1109/TIM.2021.3059500
  • Zhong, Y., Lin, J., Wang, L., & Zhang, H. (2018). Discrete comprehensive learning particle swarm optimization algorithm with metropolis acceptance criterion for traveling salesman problem. Swarm and Evolutionary Computation, 42, 77–88. https://doi.org/10.1016/j.swevo.2018.02.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.