2,834
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

The role of primary processing in the supply risks of critical metals

, , , , , & show all
Pages 335-356 | Received 13 Sep 2016, Accepted 13 Feb 2017, Published online: 07 Mar 2017

References

  • Achzet, B. and C. Helbig (2013) How To Evaluate Raw Material Supply Risks—An Overview. Resources Policy, 38, 435–447. doi: 10.1016/j.resourpol.2013.06.003
  • Dietzenbacher, E., B. Los, R. Stehrer, M. Timmer and G. de Vries (2013) The Construction of World Input–Output Tables in the Wiod Project. Economic Systems Research, 25, 71–98. doi: 10.1080/09535314.2012.761180
  • Erdmann, L. and T.E. Graedel (2011) Criticality of Non-Fuel Minerals: A Review of Major Approaches and Analyses. Environmental Science & Technology, 45, 7620–7630. doi: 10.1021/es200563g
  • European Commission (2010) Critical Raw Materials for the EU. The Ad-hoc Working Group on Defining Critical Raw Materials.
  • Fraser Institute (2016) Economic Freedom of the World Reports, http://www.freetheworld.com/reports.html.
  • Gemechu, E.D., C. Helbig, G. Sonnemann, A. Thorenz and A. Tuma (2016) Import-based Indicator for the Geopolitical Supply Risk of Raw Materials in Life Cycle Sustainability Assessments. Journal of Industrial Ecology, 20, 154–165. doi: 10.1111/jiec.12279
  • Gemechu, E.D., G. Sonnemann and S.B. Young (2017) Geopolitical-Related Supply Risk Assessment as a Complement to Environmental Impact Assessment: The Case of Electric Vehicles. The International Journal of Life Cycle Assessment, 22, 31–39. doi: 10.1007/s11367-015-0917-4
  • Gloser, S., L.T. Espinoza, C. Gandenberger and M. Faulstich (2015) Raw Material Criticality in the Context of Classical Risk Assessment. Resources Policy, 44, 35–46. doi: 10.1016/j.resourpol.2014.12.003
  • Golev, A., M. Scott, P.D. Erskine, S.H. Ali and G.R. Ballantyne (2014) Rare Earths Supply Chains: Current Status, Constraints and Opportunities. Resources Policy, 41, 52–59. doi: 10.1016/j.resourpol.2014.03.004
  • Graedel, T.E., R. Barr, C. Chandler, T. Chase, J. Choi, L. Christoffersen, E. Friedlander, C. Henly, C. Jun, N.T. Nassar, D. Schechner, S. Warren, M.Y. Yang and C. Zhu (2012) Methodology of Metal Criticality Determination. Environmental Science & Technology, 46, 1063–1070. doi: 10.1021/es203534z
  • Graedel, T.E., E.M. Harper, N.T. Nassar, P. Nuss and B.K. Reck (2015) Criticality of Metals and Metalloids. Proceedings of the National Academy of Science USA, 112, 4257–4262. doi: 10.1073/pnas.1500415112
  • Habib, K., P.K. Schibye, A.P. Vestbo, O. Dall and H. Wenzel (2014) Material Flow Analysis of NdFeB Magnets for Denmark: A Comprehensive Waste Flow Sampling and Analysis Approach. Environ Sci Technol, 48, 12229–12237. doi: 10.1021/es501975y
  • Harper, E.M., Z. Diao, S. Panousi, P. Nuss, M.J. Eckelman and T.E. Graedel (2015) The Criticality of Four Nuclear Energy Metals. Resources, Conservation and Recycling, 95, 193–201. doi: 10.1016/j.resconrec.2014.12.009
  • Harper, E.M., G. Kavlak, L. Burmeister, M.J. Eckelman, S. Erbis, V.S. Espinoza, P. Nuss and T.E. Graedel (2015) Criticality of the Geological Zinc, Tin, and Lead Family. Journal of Industrial Ecology, 19, 628–644. doi: 10.1111/jiec.12213
  • Hatayama, H. and K. Tahara (2015a) Criticality Assessment of Metals for Japan’s Resource Strategy. Materials Transactions, 56, 229–235. doi: 10.2320/matertrans.M2014380
  • Hatayama, H. and K. Tahara (2015b) Evaluating the Sufficiency of Japan’s Mineral Resource Entitlements for Supply Risk Mitigation. Resources Policy, 44, 72–80. doi: 10.1016/j.resourpol.2015.02.004
  • Hawkins, T., C. Hendrickson, C. Higgins, H.S. Matthews and S. Suh (2007) A Mixed-Unit Input–Output Model for Environmental Life-Cycle Assessment and Material Flow Analysis. Environmental Science & Technology, 41, 1024–1031. doi: 10.1021/es060871u
  • Helbig, C., L. Wietschel, A. Thorenz and A. Tuma (2016) How to Evaluate Raw Material Vulnerability – An Overview. Resources Policy, 48, 13–24. doi: 10.1016/j.resourpol.2016.02.003
  • Hirschman, A.O. (1964) The Paternity of an Index. American Economic Review, 54, 761–762.
  • Kagawa, S., K. Hubacek, K. Nansai, M. Kataoka, S. Managi, S. Suh and Y. Kudoh (2013) Better Cars or Older Cars?: Assessing CO2 Emission Reduction Potential of Passenger Vehicle Replacement Programs. Global Environmental Change-Human and Policy Dimensions, 23, 1807–1818. doi: 10.1016/j.gloenvcha.2013.07.023
  • Kagawa, S., K. Nansai, Y. Kondo, K. Hubacek, S. Suh, J. Minx, Y. Kudoh, T. Tasaki and S. Nakamura (2011) Role of Motor Vehicle Lifetime Extension in Climate Change Policy. Environmental Science & Technology, 45, 1184–1191. doi: 10.1021/es1034552
  • Kagawa, S., S. Okamoto, S. Suh, Y. Kondo and K. Nansai (2013) Finding Environmentally Important Industry Clusters: Multiway Cut Approach Using Nonnegative Matrix Factorization. Social Networks, 35, 423–438. doi: 10.1016/j.socnet.2013.04.009
  • Kagawa, S., S. Suh, Y. Kondo and K. Nansai (2013) Identifying Environmentally Important Supply Chain Clusters in the Automobile Industry. Economic Systems Research, 25, 265–286. doi: 10.1080/09535314.2012.730992
  • Lenzen, M., D. Moran, K. Kanemoto, B. Foran, L. Lobefaro and A. Geschke (2012) International Trade Drives Biodiversity Threats in Developing Nations. Nature, 486, 109–112. doi: 10.1038/nature11145
  • Lenzen, M., D. Moran, K. Kanemoto and A. Geschke (2013) Building Eora: A Global Multi-Region Input–Output Database at High Country and Sector Resolution. Economic Systems Research, 25, 20–49. doi: 10.1080/09535314.2013.769938
  • Leontief, W., F. Duchin and D.B. Szyld (1985) New Approaches in Economic-Analysis. Science, 228, 419–422. doi: 10.1126/science.228.4698.419
  • Moran, D., D. McBain, K. Kanemoto, M. Lenzen and A. Geschke (2015) Global Supply Chains of Coltan. Journal of Industrial Ecology, 19, 357–365. doi: 10.1111/jiec.12206
  • Moran, D. and R. Wood (2014) Convergence Between the Eora, Wiod, Exiobase, and Openeu’s Consumption-Based Carbon Accounts. Economic Systems Research, 26, 245–261. doi: 10.1080/09535314.2014.935298
  • Moss, R.L., E. Tzimas, P. Willis, J. Arendorf, L. Tercero Espinoza, P. Thompson, A. Chapman, N. Morley, E. Sims, R. Bryson, J. Pearson, F.M. Weidemann, M. Soulier, A. Lullmann, C. Sartorius and K. Ostertag (2013) Critical Metals in the Path Towards the Decarbonization of the EU Energy Sector: JRC Scientific and Policy Report, Publications Office of the European Union, Luxembourg.
  • Nakajima, K. and S. Nakamura (2006) Material Flow Analysis of Metals Based on the Waste Input–Output Model (WIO-MFA Model): Application to Material Cycle of Iron and Steel. Journal of the Japan Institute of Metals, 70, 618–621. doi: 10.2320/jinstmet.70.618
  • Nakamura, S., Y. Kondo, S. Kagawa, K. Matsubae, K. Nakajima and T. Nagasaka (2014) MaTrace: Tracing the Fate of Materials Over Time and Across Products in Open-Loop Recycling. Environmental Science & Technology, 48, 7207–7214. doi: 10.1021/es500820h
  • Nakamura, S., Y. Kondo, K. Matsubae, K. Nakajima and T. Nagasaka (2011) UPIOM: A New Tool of MFA and Its Application to the Flow of Iron and Steel Associated with Car Production. Environmental Science & Technology, 45, 1114–1120. doi: 10.1021/es1024299
  • Nansai, K., S. Kagawa, Y. Kondo, S. Suh, R. Inaba and K. Nakajima (2009) Improving the Completeness of Product Carbon Footprints Using a Global Link Input–Output Model: The Case of Japan. Economic Systems Research, 21, 267–290. doi: 10.1080/09535310903541587
  • Nansai, K., S. Kagawa, Y. Kondo, S. Suh, K. Nakajima, R. Inaba, Y. Oshita, T. Morimoto, K. Kawashima, T. Terakawa and S. Tohno (2012) Characterization of Economic Requirements for a “Carbon-Debt-Free Country”. Environmental Science & Technology, 46, 155–163. doi: 10.1021/es202007b
  • Nansai, K., Y. Kondo, S. Kagawa, S. Suh, K. Nakajima, R. Inaba and S. Tohno (2012) Estimates of Embodied Global Energy and Air-Emission Intensities of Japanese Products for Building a Japanese Input-Output Life Cycle Assessment Database with a Global System Boundary. Environmental Science & Technology, 46, 9146–9154. doi: 10.1021/es2043257
  • Nansai, K., K. Nakajima, S. Kagawa, Y. Kondo, Y. Shigetomi and S. Suh (2015) Global Mining Risk Footprint of Critical Metals Necessary for Low-Carbon Technologies: The Case of Neodymium, Cobalt, and Platinum in Japan. Environmental Science & Technology, 49, 2022–2031. doi: 10.1021/es504255r
  • Nansai, K., K. Nakajima, S. Kagawa, Y. Kondo, S. Suh, Y. Shigetomi and Y. Oshita (2014) Global Flows of Critical Metals Necessary for Low-Carbon Technologies: The Case of Neodymium, Cobalt, and Platinum. Environmental Science & Technology, 48, 1391–1400. doi: 10.1021/es4033452
  • Nassar, N.T., R. Barr, M. Browning, Z.W. Diao, E. Friedlander, E.M. Harper, C. Henly, G. Kavlak, S. Kwatra, C. Jun, S. Warren, M.Y. Yang and T.E. Graedel (2012) Criticality of the Geological Copper Family. Environmental Science & Technology, 46, 1071–1078. doi: 10.1021/es203535w
  • Nassar, N.T., T.E. Graedel and E.M. Harper (2015) By-Product Metals are Technologically Essential but Have Problematic Supply. Science Advances, 1, 10.
  • National Research Council (2008) Minerals, Critical Minerals, and the U.S. Economy. Washington, DC, The National Academies Press.
  • Nuss, P. and M.J. Eckelman (2014) Life Cycle Assessment of Metals: A Scientific Synthesis. Plos One, 9, e101298, 1–12.
  • Nuss, P., T.E. Graedel, E. Alonso and A. Carroll (2016) Mapping Supply Chain Risk by Network Analysis of Product Platforms. Sustainable Materials and Technologies, 10, 14–22. doi: 10.1016/j.susmat.2016.10.002
  • Oita, A., A. Malik, K. Kanemoto, A. Geschke, S. Nishijima and M. Lenzen (2016) Substantial Nitrogen Pollution Embedded in International Trade. Nature Geoscience, 9, 111–115. doi: 10.1038/ngeo2635
  • Panousi, S., E.M. Harper, P. Nuss, M.J. Eckelman, A. Hakimian and T.E. Graedel (2016) Criticality of Seven Specialty Metals. Journal of Industrial Ecology, 20, 837–853. doi: 10.1111/jiec.12295
  • Peters, G.P., R. Andrew and J. Lennox (2011) Constructing an Environmentally-Extended Multi-Regional Input-Output Table Using the GTAP Database. Economic Systems Research, 23, 131–152. doi: 10.1080/09535314.2011.563234
  • Reck, B.K., D.B. Muller, K. Rostkowski and T.E. Graedel (2008) Anthropogenic Nickel Cycle: Insights Into Use, Trade, and Recycling. Environmental Science & Technology, 42, 3394–3400. doi: 10.1021/es072108l
  • Shigetomi, Y., K. Nansai, S. Kagawa and S. Tohno (2014) Changes in the Carbon Footprint of Japanese Households in an Aging Society. Environmental Science & Technology, 48, 6069–6080. doi: 10.1021/es404939d
  • Shigetomi, Y., K. Nansai, S. Kagawa and S. Tohno (2015) Trends in Japanese Households’ Critical-Metals Material Footprints. Ecological Economics, 119, 118–126. doi: 10.1016/j.ecolecon.2015.08.010
  • Simon, B., S. Ziemann and M. Weil (2014) Criticality of Metals for Electrochemical Energy Storage Systems – Development Towards a Technology Specific Indicator. Metallurgical Research & Technology, 111, 191–200. doi: 10.1051/metal/2014010
  • Sprecher, B., R. Kleijn and G.J. Kramer (2014) Recycling Potential of Neodymium: The Case of Computer Hard Disk Drives. Environmental Science & Technology, 48, 9506–9513. doi: 10.1021/es501572z
  • Sun, Z., Y.P. Xiao, H. Agterhuis, J. Sietsma and Y.X. Yang (2016) Recycling of Metals from Urban Mines – A Strategic Evaluation. Journal of Cleaner Production, 112, 2977–2987. doi: 10.1016/j.jclepro.2015.10.116
  • Tisserant, A. and S. Pauliuk (2016) Matching Global Cobalt Demand Under Different Scenarios for Co-Production and Mining Attractiveness. Journal of Economic Structures, 5, 4, 1–19. doi: 10.1186/s40008-016-0035-x
  • Tokito, S., S. Kagawa and K. Nansai (2016) Understanding International Trade Network Complexity of Platinum: The Case of Japan. Resources Policy, 49, 415–421. doi: 10.1016/j.resourpol.2016.07.009
  • Tukker, A., E. Poliakov, R. Heijungs, T. Hawkins, F. Neuwahl, J.M. Rueda-Cantuche, S. Giljum, S. Moll, J. Oosterhaven and M. Bouwmeester (2009) Towards a Global Multi-Regional Environmentally Extended Input-Output Database. Ecological Economics, 68, 1928–1937. doi: 10.1016/j.ecolecon.2008.11.010
  • U. S. Department of Energy (2011) Critical Materials Strategy. Washington, U.S. Department of Energy.
  • Wiedmann, T.O., H. Schandl, M. Lenzen, D. Moranc, S. Suh, J. West and K. Kanemoto (2013) The Material Footprint of Nations. Proceedings of the National Academy of Sciences of the United States of America, 112, 6271–6276. doi: 10.1073/pnas.1220362110
  • Wilcon, A., F. McMahon, M. Cervantes and K.P. Green (2013) Fraser Institute Annual: Survey of Mining Companies 2012/2013. Vancouver, The Fraser Institute.
  • World Bank Development Research Group (2016) The Worldwide Governance Indicators, 2016 Update, www.govindicators.org.
  • Yoshida, A. and A. Terazono (2010) Reuse of Secondhand TVs Exported from Japan to the Philippines. Waste Management, 30, 1063–1072. doi: 10.1016/j.wasman.2010.02.011
  • Ziemann, S., A. Grunwald, L. Schebek, D.B. Muller and M. Weil (2013) The Future of Mobility and Its Critical Raw Materials. Revue De Metallurgie-Cahiers D Informations Techniques, 110, 47–54.
  • Zimmermann, T. and S. Gösslgling-Reisemann (2013) Critical Materials and Dissipative Losses: A Screening Study. Science of the Total Environment, 461–462, 774–780. doi: 10.1016/j.scitotenv.2013.05.040