873
Views
56
CrossRef citations to date
0
Altmetric
Special Review Section: Platelet Secretion

The cellular basis of platelet secretion: Emerging structure/function relationships

&
Pages 108-118 | Received 13 Sep 2016, Accepted 27 Oct 2016, Published online: 23 Dec 2016

References

  • Rinehart JF. Electron microscopic studies of sectioned white blood cells and platelets: With observations on the derivation of specific granules from mitochondria. Am J Clin Pathol 1955;25(6):605–619.
  • Rodman NF Jr, Mason RG, McDevitt NB, Brinkhous KM. Morphologic alterations of human blood platelets during early phases of clotting. Electron microscopic observations of thin sections. Am J Pathol 1962;40:271–284.
  • Rodman NF Jr, Painter JC, McDevitt NB. Platelet disintegration during clotting. J Cell Biol 1963;16:225–241.
  • Siegel A, Lüscher EF. Non-identity of the alpha-granules of human blood platelets with typical lysosomes. Nature 1967 Aug 12;215(5102):745–747.
  • Sander HJ, Slot JW, Bouma BN, Bolhuis PA, Pepper DS, Sixma JJ. Immunocytochemical localization of fibrinogen, platelet factor 4, and beta thromboglobulin in thin frozen sections of human blood platelets. J Clin Invest 1983 Oct;72(4):1277–1287. doi: 10.1172/JCI111084
  • Wencel-Drake JD, Plow EF, Zimmerman TS, Painter RG, Ginsberg MH. Immunofluorescent localization of adhesive glycoproteins in resting and thrombin-stimulated platelets. Am J Pathol 1984 May;115(2):156–164.
  • Zucker MB, Borrelli J. Relationship of some blood clotting factors to serotonin release from washed platelets. J Appl Physiol 1955 Jan;7(4):432–442.
  • Zucker MB, Borrelli J. Quantity, assay and release of serotonin in human platelets. J Appl Physiol 1955 Jan;7(4):425–431.
  • Holmsen H, Setkowsky CA, Lages B, Day HJ, Weiss HJ, Scrutton MC. Content and thrombin-induced release of acid hydrolases in gel-filtered platelets from patients with storage pool disease. Blood 1975 Jul;46(1):131–142.
  • Lages B, Scrutton MC, Holmsen H. Studies on gel-filtered human platelets: Isolation and characterization in a medium containing no added Ca2+, Mg2+, or K+. J Lab Clin Med 1975 May;85(5):811–825.
  • Walsh PN, Gagnatelli G. Platelet antiheparin activity: Storage site and release mechanism. Blood 1974 Aug;44(2):157–168.
  • King SM, Reed GL. Development of platelet secretory granules. Semin Cell Dev Biol. 2002;13(4):293–302.
  • White JG. Platelet structure. In: Michelson AD, editor. Platelets. 2nd ed. Burlington, MA: Academic Press Elsevier; 2007. p. 45–73.
  • White JG. Platelet structure. In: Michelson AD, editor. Platelets. 3rd ed. Burlington, MA: Academic Press Elsevier; 2013. p. 117–144.
  • Spicer SS, Greene WB, Hardin JH Ultrastructural localization of acid mucosubstance and antimonate-precipitable cation in human and rabbit platelets and megakaryocytes. J Histochem Cytochem. 1969;(12):781–92.
  • Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004;103(6):2096–2104. doi: 10.1182/blood-2003-08-2804
  • Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA. Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost 2007;5(9):1945–1955. doi: 10.1111/j.1538-7836.2007.02690.x
  • Folkman J. Angiogenesis: An organizing principle for drug discovery? Nat Rev Drug Discov 2007;6(4):273–286. doi: 10.1038/nrd2115
  • White GC 2nd, Rompietti R. Platelet secretion: Indiscriminately spewed forth or highly orchestrated? J Thromb Haemost 2007;5:2006–2008.
  • Kamykowski J, Carlton P, Sehgal S, Storrie B. Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet α-granules. Blood 2011;118(5):1370–1373. doi: 10.1182/blood-2011-01-330910
  • Heijnen HF, Debili N, Vainchencker W, Breton-Gorius J, Geuze HJ, Sixma JJ. Multivesicular bodies are an intermediate stage in the formation of platelet alpha-granules. Blood 1998;91(7):2313–2325.
  • Van Nispen tot Pannerden H, De Haas F, Geerts W, Posthuma G, Van Dijk S, Heijnen HF. The platelet interior revisited: Electron tomography reveals tubular alpha-granule subtypes. Blood 2010; 116(7):1147–1156. doi: 10.1182/blood-2010-02-268680
  • MacDonald L, Baldini G, Storrie B. Does super-resolution fluorescence microscopy obsolete previous microscopic approaches to protein co-localization? Methods Mol Biol 2015;1270:255–275. doi: 10.1007/978-1-4939-2309-0_19
  • Pokrovskaya ID, Aronova MA, Kamykowski JA, Prince AA, Hoyne JD, Calco GN, Kuo BC, He Q, Leapman RD, Storrie B. STEM tomography reveals that the canalicular system and α-granules remain separate compartments during early secretion stages in blood platelets. J Thromb Haemost 2016;14(3):572–584. doi: 10.1111/jth.13225
  • Sousa AA, Azari AA, Zhang G, Leapman RD. Dual-axis electron tomography of biological specimens: Extending the limits of specimen thickness with bright-field STEM imaging. J Struct Biol 2011 Apr;174(1):107–114. doi: 10.1016/j.jsb.2010.10.017
  • Hohmann-Marriott MF, Sousa AA, Azari AA, Glushakova S, Zhang G, Zimmerberg J, Leapman RD. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Methods 2009 Oct;6(10):729–731. doi: 10.1038/nmeth.1367
  • Eckly A, Rinckel JY, Proamer F, Ulas N, Joshi S, Whiteheart SW, Gachet C . Respective contributions of single and compound granule fusion to secretion by activated platelets. Blood. 2016 Nov 24;128(21):2538–2549.
  • Yadav S, Williamson JK, Aronova MA, Prince AA, Pokrovskaya ID, Leapman RD, Storrie B. Golgi proteins in circulating human platelets are distributed across non-stacked, scattered structures. Platelets 2016, in press. doi: 10.1080/09537104.2016.1235685
  • Sehgal S, Storrie B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost 2007;5(10):2009–2016. doi: 10.1111/j.1538-7836.2007.02698.x
  • Italiano JE Jr, Richardson JL, Patel-Hett S, Battnelli E, Short S, Ryeom S, Folkman J, Klement GL. Angiogenesis is regulated by a novel mechanism: Pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2008; 111: 1227–1233. doi: 10.1182/blood-2007-09-113837
  • Stenberg PE, Shuman MA, Levine SP, Bainton DF. Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J Cell Biol 1984 Feb;98(2):748–760.
  • Stenberg PE, Shuman MA, Levine SP, Bainton DF. Optimal techniques for the immunocytochemical demonstration of beta-thromboglobulin, platelet factor 4, and fibrinogen in the alpha granules of unstimulated platelets. Histochem J 1984 Sep;16(9):983–1001.
  • Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 1985 Sep;101(3):880–886.
  • Ambrosio AL, Boyle JA, Di Pietro SM. TPC2 mediates new mechanisms of platelet dense granule membrane dynamics through regulation of Ca2+ release. Mol Biol Cell 2015 Sep 15;26(18):3263–3274. doi: 10.1091/mbc.E15-01-0058
  • Holt M, Riedel D, Stein A, Schuette C, Jahn R. Synaptic vesicles are constitutively active fusion machines that function independently of Ca2+. Curr Biol 2008 May 20;18(10):715–722. doi: 10.1016/j.cub.2008.04.069
  • Ge S, Woo E, Haynes CL. Quantal regulation and exocytosis of platelet dense-body granules. Biophys J 2011 Nov 16;101(10):2351–2359. doi: 10.1016/j.bpj.2011.10.001
  • Finkenstaedt-Quinn SA, Gruba SM, Haynes CL. Variations in fusion pore formation in cholesterol-treated platelets. Biophys J 2016 Feb 23;110(4):922–929. doi: 10.1016/j.bpj.2015.12.034
  • Koseoglu S, Dilks JR, Peters CG, Fitch-Tewfik JL, Fadel NA, Jasuja R, Italiano JE Jr, Haynes CL, Flaumenhaft R. Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis. Arterioscler Thromb Vasc Biol 2013 Mar;33(3):481–488. doi: 10.1161/ATVBAHA.112.255737
  • White JG. The transfer of thorium particles from plasma to platelets and platelet granules. Am J Pathol 1968 Oct;53(4):567–575.
  • White JG. A search for the platelet secretory pathway using electron dense tracers. Am J Pathol 1970 Jan;58(1):31–49.
  • White JG, Estensen RD. Degranulation of discoid platelets. Am J Pathol 1972 Aug;68(2):289–302.
  • White JG. Exocytosis of secretory organelles from blood platelets incubated with cationic polypeptides. Am J Pathol 1972 Oct;69(1):41–54.
  • Howell K, White JG, Hobert O. Spatiotemporal control of a novel synaptic organizer molecule. Nature 2015 Jul 2;523(7558):83–87. doi: 10.1038/nature14545
  • Morgenstern E, Neumann K, Patscheke H. The exocytosis of human blood platelets. A fast freezing and freeze-substitution analysis. Eur J Cell Biol 1987 Apr;43(2):273–282.
  • Wandall HH, Rumjantseva V, Sørensen AL, Patel-Hett S, Josefsson EC, Bennett EP, Italiano JE Jr, Clausen H, Hartwig JH, Hoffmeister KM. The origin and function of platelet glycosyltransferases. Blood 2012 Jul 19;120(3):626–635. doi: 10.1182/blood-2012-02-409235
  • Lau LF, Pumiglia K, Côté YP, Feinstein MB. Thrombin-receptor agonist peptides, in contrast to thrombin itself, are not full agonists for activation and signal transduction in human platelets in the absence of platelet-derived secondary mediators. Biochem J 1994 Oct 15;303(Pt 2):391–400.
  • Huang Y, Joshi S, Xiang B, Kanaho Y, Li Z, Bouchard BA, Moncman CL, Whiteheart SW . Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking. Blood. 2016;127(11):1459–67.
  • Ma L, Perini R, McKnight W, Dicey M, Klein A, Hollenberg MD, Wallace JL. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci USA 2005;102:216–220. doi: 10.1073/pnas.0406682102
  • Jonnalagadda D, Izu LT, Whiteheart SW. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood 2012 Dec 20;120(26):5209–5216. doi: 10.1182/blood-2012-07-445080
  • Nguyen KA, Hamzeh-Cognasse H, Laradi S, Pozzetto B, Garraud O, Cognasse F. Specific activation, signalling and secretion profiles of human platelets following PAR-1 and PAR-4 stimulation. Platelets 2015;26(8):795–798. doi: 10.3109/09537104.2015.1050585
  • Van Holten TC, Bleijerveld OB, Wijten P, De Groot PG, Heck AJ, Barendrecht AD, Merkx TH, Scholten A, Roest M. Quantitative proteomics analysis reveals similar release profiles following specific PAR-1 or PAR-4 stimulation of platelets. Cardiovasc Res 2014;103(1):140–146. doi: 10.1093/cvr/cvu113
  • Vélez P, Izquierdo I, Rosa I, García Á. A 2D-DIGE-based proteomic analysis reveals differences in the platelet releasate composition when comparing thrombin and collagen stimulations. Sci Rep 2015;5:8198. doi: 10.1038/srep08198
  • Peters CG, Michelson AD, Flaumenhaft R. Granule exocytosis is required for platelet spreading: differential sorting of α-granules expressing VAMP-7. Blood 2012;120(1):19. doi: 10.1182/blood-2011-10-389247
  • Bordoli MR, Yum J, Breitkopf SB, Thon JN, Italiano JE Jr, Xiao J, Worby C, Wong SK, Lin G, Edenius M, et al. A secreted tyrosine kinase acts in the extracellular environment. Cell 2014 Aug 28;158(5):1033–1044. doi: 10.1016/j.cell.2014.06.048
  • Lee MM, Nasirikenari M, Manhardt CT, Ashline DJ, Hanneman AJ, Reinhold VN, Lau JT. Platelets support extracellular sialylation by supplying the sugar donor substrate. J Biol Chem 2014 Mar 28;289(13):8742–8748. doi: 10.1074/jbc.C113.546713
  • Jones MB, Oswald DM, Joshi S, Whiteheart SW, Orlando R, Cobb BA . B-cell-independent sialylation of IgG. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7207–12.
  • Chen K, Lin Y, Detwiler TC. Protein disulfide isomerase activity is released by activated platelets. Blood 1992 May 1;79(9):2226–2228.
  • Furie B, Flaumenhaft R. Thiol isomerases in thrombus formation. Circ Res 2014 Mar 28;114(7):1162–1173. doi: 10.1161/CIRCRESAHA.114.301808
  • Thon JN, Peters CG, Machlus KR, Aslam R, Rowley J, Macleod H, Devine MT, Fuchs TA, Weyrich AS, Semple JW, et al. T granules in human platelets function in TLR9 organization and signaling. J Cell Biol 2012 Aug 20;198(4):561–574. doi: 10.1083/jcb.201111136
  • Crescente M, Pluthero FG, Li L, Lo RW, Walsh TG, Schenk MP, Holbrook LM, Louriero S, Ali MS, Vaiyapuri S, et al. Intracellular trafficking, localization, and mobilization of platelet-borne thiol isomerases. Arterioscler Thromb Vasc Biol 2016 Jun;36(6):1164–1173. doi: 10.1161/ATVBAHA.116.307461
  • Mannino RG, Myers DR, Ahn B, Wang Y, Margo R, Gole H, Lin AS, Guldberg RE, Giddens DP, Timmins LH, et al. Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions. Sci Rep 2015 Jul 23;5:12401. doi: 10.1038/srep12401
  • Voronov RS, Stalker TJ, Brass LF, Diamond SL. Simulation of intrathrombus fluid and solute transport using in vivo clot structures with single platelet resolution. Ann Biomed Eng 2013 Jun;41(6):1297–1307. doi: 10.1007/s10439-013-0764-z
  • Heijnen H, van der Sluijs P. Platelet secretory behaviour: As diverse as the granules … or not? J Thromb Haemost 2015;13(12):2141–2151. doi: 10.1111/jth.13147
  • Rendu F, Brohard-Bohn B. Platelets in thrombotic and non-thrombotic disorders. Cambridge University Press; 2002. p. 104–112.
  • Blair P, Flaumenhaft R. Platelet alpha-granules: Basic biology and clinical correlates. Blood Rev 2009;23(4):177–189. doi: 10.1016/j.blre.2009.04.001
  • Fitch-Tewfik JL, Flaumenhaft R. Platelet granule exocytosis: A comparison with chromaffin cells. Front Endocrinol (Lausanne) 2013;26;4:77.
  • Whiteheart SW. Platelet granules: Surprise packages. Blood 2011 Aug 4;118(5):1190–1191. doi: 10.1182/blood-2011-06-359836
  • Tschopp J, Jenne DE, Hertig S, Preissner KT, Morgenstern H, Sapino AP, French L. Human megakaryocytes express clusterin and package it without apolipoprotein A-1 into alpha-granules. Blood 1993;82(1):118–125.
  • Piersma SR, Broxterman HJ, Kapci M, De Haas RR, Hoekman K, Verheul HM, Jiménez CR. Proteomics of the TRAP-induced platelet releasate. J Proteomics 2009;72(1):91–109. doi: 10.1016/j.jprot.2008.10.009
  • Zufferey A, Schvartz D, Nolli S, Reny JL, Sanchez JC, Fontana P. Characterization of the platelet granule proteome: Evidence of the presence of MHC1 in alpha-granules. J Proteomics 2014;101:130–140. doi: 10.1016/j.jprot.2014.02.008
  • Metzelaar MJ, Heijnen HF, Sixma JJ, Nieuwenhuis HK. Identification of a 33-Kd protein associated with the alpha-granule membrane (GMP-33) that is expressed on the surface of activated platelets. Blood 1992;79(2):372–379.
  • Heintzmann R, Ficz G. Breaking the resolution limit in light microscopy. Methods Cell Biol 2013;114:525–544. doi: 10.1016/B978-0-12-407761-4.00022-1
  • Stemmer A, Beck M, Fiolka R. Widefield fluorescence microscopy with extended resolution. Histochem Cell Biol 2008 Nov;130(5):807–817. doi:10.1007/s00418-008-0506-8
  • Shaw PJ. Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging. Handbook of biological confocal microscopy. Springer; 2006, p. 453–467.
  • Jensen E, Crossman DJ. Technical review: Types of imaging-direct STORM. Anat Rec (Hoboken) 2014 Dec;297(12):2227–2231. doi: 10.1002/ar.22960. Epub 2014 Jul 4
  • Thorley JA, Pike J, Rappoport JZ. Super-resolution microscopy: A comparison of commercially available options. In: Fluorescence microscopy: Super-resolution and other novel techniques. Elsevier Inc.; 2014. p. 199–212.
  • Osamura RY, Itoh Y, Matsuno A. Applications of plastic embedding to electron microscopic immunocytochemistry and in situ hybridization in observations of production and secretion of peptide hormones. J Histochem Cytochem 2000 Jul;48(7):885–891.
  • Peters PJ, Bos E, Griekspoor A. Cryo-immunogold electron microscopy. Currt Protoc Cell Biol 2006;32: 4.7:4.7.1–4.7.19.
  • Godsave SF, Wille H, Kujala P, Latawiec D, DeArmond SJ, Serban A, Prusiner SB, Peters PJ. Cryo-immunogold electron microscopy for prions: Toward identification of a conversion site. J Neurosci 2008 Nov 19;28(47):12489–12499. doi: 10.1523/JNEUROSCI.4474-08.2008
  • De Paul AL, Mukdsi JH, Petiti JP, Gutiérrez S, Quintar AA, Maldonado C, Torres A. Immunoelectron microscopy: A reliable tool for the analysis of cellular processes. In: Dehghani Hesam editor. Applications of immunocytochemistry. Rijeka, Croatia: InTech; 2012.
  • Sorzano CO, Messaoudi C, Eibauer M, Bilbao-Castro JR, Hegerl R, Nickell S, Marco S, Carazo JM. Marker-free image registration of electron tomography tilt-series. BMC Bioinf 2009 Apr 27; doi: 10:124. 10.1186/1471-2105-10-124
  • Hickey WJ, Shetty AR, Massey RJ, Toso DB, Austin J 2nd. Three-dimensional bright-field scanning transmission electron microscopy elucidate novel nanostructure in microbial biofilms. J Microsc 2016 Aug 12. doi: 10.1111/jmi.12455
  • Schaffer M, Engel BD, Laugks T, Mahamid J, Plitzko JM, Baumeister W. Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio Protoc 2015;5(17). pii: e1575.
  • Delgado L, Martínez G, López-Iglesias C, Mercadé E. Cryo-electron tomography of plunge-frozen whole bacteria and vitreous sections to analyze the recently described bacterial cytoplasmic structure, the Stack. J Struct Biol 2015;189(3):220–229. doi: 10.1016/j.jsb.2015.01.008
  • Hekking LHP, Lebbink MN, De Winter DAM, Schneijdenberg Ctwm, Brand Cm, Humbel Bm, Verkleij Aj, Post Ja. Focused ion beam-scanning electron microscope: exploring large volumes of atherosclerotic tissue. J. Microsc Oxford 2009;235:336–347. doi: 10.1111/j.1365-2818.2009.03274.x
  • Shomorony A, Pfeifer CR, Aronova MA, Zhang G, Cai T, Xu H, Notkins AL, Leapman RD. Combining quantitative 2D and 3D image analysis in the serial block face SEM: Application to secretory organelles of pancreatic islet cells. J Microsc 2015; 259(2):155–164. doi: 10.1111/jmi.12276
  • Pinali C, Kitmitto A. Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions. J Mol Cell Cardiol 2014 Nov;76:1–11. doi: 10.1016/j.yjmcc.2014.08.010
  • Mustafi D, Kikano S, Palczewski K. Serial block face-scanning electron microscopy: A method to study retinal degenerative phenotypes. Curr Protoc Mouse Biol 2014 Dec 11;4(4):197–204. doi: 10.1002/9780470942390.mo140169

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.