1,209
Views
15
CrossRef citations to date
0
Altmetric
Special Review Series

Megakaryocyte polyploidization: role in platelet production

ORCID Icon & ORCID Icon
Pages 707-716 | Received 27 May 2019, Accepted 09 Sep 2019, Published online: 22 Sep 2019

References

  • Bluteau D, Glembotsky AC, Raimbault A, Balayn N, Gilles L, Rameau P, Nurden P, Alessi MC, Debili N, Vainchenker W, et al. Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression. Blood 2014;120:2708–2718. doi:10.1182/blood-2012-04-422337
  • Breton-Gorius J, Favier R, Guichard J, Cherif D, Berger R, Debili N, Vainchenker W, Douay L. A new congenital dysmegakaryopoietic thrombocytopenia (Paris-Trousseau) associated with giant platelet alpha-granules and chromosome 11 deletion at 11q23. Blood 1995;85:1805–1814.
  • Raslova H, Komura E, Le Couedic JP, Larbret F, Debili N, Feunteun J, Danos O, Albagli O, Vainchenker W, Favier R. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest 2004;114:77–84. doi:10.1172/JCI21197
  • Balduini CL, Pecci A, Loffredo G, Izzo P, Noris P, Grosso M, Bergamaschi G, Rosti V, Magrini U, Ceresa IF, et al. Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis. Thromb Haemost 2004;91:129–140. doi:10.1160/TH03-05-0290
  • Ravid K, Lu J, Zimmet JM, Jones MR. Roads to polyploidy: the megakaryocyte example. J Cell Physiol 2002;190:7–20. Epub 2002/ 01/25. doi:10.1002/jcp.10035
  • Vainchenker W, Guichard J, Breton-Gorius J. [Differentiation of human megakaryocytes in culture starting from the primordial circulating cells in the newborn]. Comptes rendus hebdomadaires des seances de l’Academie des sciences Serie D: Sciences naturelles 1978;287:177–179. Epub 1978/ 07/17.
  • Nagata Y, Muro Y, Todokoro K. Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis. J Cell Biol 1997;139:449–457. Epub 1997/ 10/23. doi:10.1083/jcb.139.2.449
  • Vitrat N, Cohen-Solal K, Pique C, Le Couedic JP, Norol F, Larsen AK, Katz A, Vainchenker W, Debili N. Endomitosis of human megakaryocytes are due to abortive mitosis. Blood 1998;91:3711–3723. Epub 1998/ 06/20.
  • Geddis AE, Fox NE, Tkachenko E, Kaushansky K. Endomitotic megakaryocytes that form a bipolar spindle exhibit cleavage furrow ingression followed by furrow regression. Cell Cycle (georgetown, Tex) 2007;6:455–460. Epub 2007/ 02/22. doi:10.4161/cc.6.4.3836
  • Lordier L, Jalil A, Aurade F, Larbret F, Larghero J, Debili N, Vainchenker W, Chang Y. Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood 2008;112:3164–3174. Epub 2008/ 08/08. doi:10.1182/blood-2008-03-144956
  • Papadantonakis N, Makitalo M, McCrann DJ, Liu K, Nguyen HG, Martin G, Patel-Hett S, Italiano JE, Ravid K. Direct visualization of the endomitotic cell cycle in living megakaryocytes: differential patterns in low and high ploidy cells. Cell Cycle (georgetown, Tex) 2008;7:2352–2356. Epub 2008/ 08/05. doi:10.4161/cc.6325
  • Lordier L, Pan J, Naim V, Jalil A, Badirou I, Rameau P, Larghero J, Debili N, Rosselli F, Vainchenker W, et al. Presence of a defect in karyokinesis during megakaryocyte endomitosis. Cell Cycle (georgetown, Tex) 2012;11:4385–4389. Epub 2012/ 11/20. doi:10.4161/cc.22712
  • Leysi-Derilou Y, Robert A, Duchesne C, Garnier A, Boyer L, Pineault N. Polyploid megakaryocytes can complete cytokinesis. Cell Cycle (georgetown, Tex) 2010;9:2589–2599. Epub 2010/ 07/22. doi:10.4161/cc.9.13.12078
  • Sun S, Zimmet JM, Toselli P, Thompson A, Jackson CW, Ravid K. Overexpression of cyclin D1 moderately increases ploidy in megakaryocytes. Haematologica 2001;86:17–23. Epub 2001/ 01/09.
  • Wang Z, Zhang Y, Kamen D, Lees E, Ravid K. Cyclin D3 is essential for megakaryocytopoiesis. Blood 1995;86:3783–3788. Epub 1995/ 11/15.
  • Zimmet JM, Toselli P, Ravid K. Cyclin D3 and megakaryocyte development: exploration of a transgenic phenotype. Stem Cells 1998;16:97–106. doi:10.1002/stem.5530160713
  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P. Cyclin E ablation in the mouse. Cell 2003;114:431–443. doi:10.1016/s0092-8674(03)00645-7
  • Eliades A, Papadantonakis N, Ravid K. New roles for cyclin E in megakaryocytic polyploidization. J Biol Chem 2010;285:18909–18917. Epub 2010/ 04/16. doi:10.1074/jbc.M110.102145
  • Bermejo R, Vilaboa N, Cales C. Regulation of CDC6, geminin, and CDT1 in human cells that undergo polyploidization. Mol Biol Cell 2002;13:3989–4000. Epub 2002/ 11/14. doi:10.1091/mbc.e02-04-0217
  • Raslova H, Kauffmann A, Sekkai D, Ripoche H, Larbret F, Robert T, Le Roux DT, Kroemer G, Debili N, Dessen P, et al. Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood 2007;109:3225–3234. Epub 2006/ 12/16. doi:10.1182/blood-2006-07-037838
  • Taniguchi T, Endo H, Chikatsu N, Uchimaru K, Asano S, Fujita T, Nakahata T, Motokura T. Expression of p21(Cip1/Waf1/Sdi1) and p27(Kip1) cyclin-dependent kinase inhibitors during human hematopoiesis. Blood 1999;93:4167–4178.
  • Baccini V, Roy L, Vitrat N, Chagraoui H, Sabri S, Le Couedic JP, Debili N, Wendling F, Vainchenker W. Role of p21(Cip1/Waf1) in cell-cycle exit of endomitotic megakaryocytes. Blood 2001;98:3274–3282. Epub 2001/ 11/24. doi:10.1182/blood.v98.12.3274
  • Apostolidis PA, Woulfe DS, Chavez M, Miller WM, Papoutsakis ET. Role of tumor suppressor p53 in megakaryopoiesis and platelet function. Exp Hematol 2012;40:131–142.e134. Epub 2011/ 10/26. doi:10.1016/j.exphem.2011.10.006
  • Mahfoudhi E, Lordier L, Marty C, Pan J, Roy A, Roy L, Rameau P, Abbes S, Debili N, Raslova H, et al. P53 activation inhibits all types of hematopoietic progenitors and all stages of megakaryopoiesis. Oncotarget 2016;7:31980–31992. doi:10.18632/oncotarget.7881
  • Gilles L, Guieze R, Bluteau D, Cordette-Lagarde V, Lacout C, Favier R, Larbret F, Debili N, Vainchenker W, Raslova H. P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1. Blood 2008;111:4081–4091. doi:10.1182/blood-2007-09-113266
  • Roy L, Coullin P, Vitrat N, Hellio R, Debili N, Weinstein J, Bernheim A, Vainchenker W. Asymmetrical segregation of chromosomes with a normal metaphase/anaphase checkpoint in polyploid megakaryocytes. Blood 2001;97:2238–2247. Epub 2001/ 04/06. doi:10.1182/blood.v97.8.2238
  • Trakala M, Rodriguez-Acebes S, Maroto M, Symonds CE, Santamaria D, Ortega S, Barbacid M, Mendez J, Malumbres M. Functional reprogramming of polyploidization in megakaryocytes. Dev Cell 2015;32:155–167. Epub 2015/ 01/28. doi:10.1016/j.devcel.2014.12.015
  • Geddis AE, Kaushansky K. Endomitotic megakaryocytes form a midzone in anaphase but have a deficiency in cleavage furrow formation. Cell Cycle (georgetown, Tex) 2006;5:538–545. Epub 2006/ 03/23. doi:10.4161/cc.5.5.2537
  • Lordier L, Chang Y, Jalil A, Aurade F, Garcon L, Lecluse Y, Larbret F, Kawashima T, Kitamura T, Larghero J, et al. Aurora B is dispensable for megakaryocyte polyploidization, but contributes to the endomitotic process. Blood 2010;116:2345–2355. Epub 2010/ 06/16. doi:10.1182/blood-2010-01-265785
  • Geddis AE, Kaushansky K. Megakaryocytes express functional Aurora-B kinase in endomitosis. Blood 2004;104:1017–1024. doi:10.1182/blood-2004-02-0419
  • Seki A, Coppinger JA, Jang CY, Yates JR, Fang G. Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008;320:1655–1658. doi:10.1126/science.1157425
  • Macurek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R, Clouin C, Taylor SS, Yaffe MB, Medema RH. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 2008;455:119–123. doi:10.1038/nature07185
  • Eckerdt F, Maller JL. Kicking off the polo game. Trends Biochem Sci 2008;33:511–513. doi:10.1016/j.tibs.2008.08.004
  • Archambault V, Carmena M. Polo-like kinase-activating kinases: aurora A, Aurora B and what else? Cell Cycle (georgetown, Tex) 2012;11:1490–1495. doi:10.4161/cc.19724
  • Trakala M, Partida D, Salazar-Roa M, Maroto M, Wachowicz P, de Carcer G, Malumbres M. Activation of the endomitotic spindle assembly checkpoint and thrombocytopenia in Plk1-deficient mice. Blood 2015;126:1707–1714. Epub 2015/ 07/18. doi:10.1182/blood-2015-03-634402
  • Goldenson B, Kirsammer G, Stankiewicz MJ, Wen QJ, Crispino JD. Aurora kinase A is required for hematopoiesis but is dispensable for murine megakaryocyte endomitosis and differentiation. Blood 2015;125:2141–2150. Epub 2015/ 02/12. doi:10.1182/blood-2014-12-615401
  • Hickson GR, Echard A, O’Farrell PH. Rho-kinase controls cell shape changes during cytokinesis. Curr Biol 2006;16:359–370. doi:10.1016/j.cub.2005.12.043
  • Wen Q, Goldenson B, Silver SJ, Schenone M, Dancik V, Huang Z, Wang LZ, Lewis TA, An WF, Li X, et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell 2012;150:575–589. Epub 2012/ 08/07. doi:10.1016/j.cell.2012.06.032
  • Shin JW, Swift J, Spinler KR, Discher DE. Myosin-II inhibition and soft 2D matrix maximize multinucleation and cellular projections typical of platelet-producing megakaryocytes. Proc Natl Acad Sci U S A 2011;108:11458–11463. Epub 2011/ 06/29. doi:10.1073/pnas.1017474108
  • Lordier L, Bluteau D, Jalil A, Legrand C, Pan J, Rameau P, Jouni D, Bluteau O, Mercher T, Leon C, et al. RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nat Commun 2012;3:717. doi:10.1038/ncomms1704
  • Gao Y, Smith E, Ker E, Campbell P, Cheng EC, Zou S, Lin S, Wang L, Halene S, Krause DS. Role of RhoA-specific guanine exchange factors in regulation of endomitosis in megakaryocytes. Dev Cell 2012;22:573–584. Epub 2012/ 03/06. doi:10.1016/j.devcel.2011.12.019
  • Roy A, Lordier L, Pioche-Durieu C, Souquere S, Roy L, Rameau P, Lapierre V, Le Cam E, Plo I, Debili N, et al. Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint. Haematologica 2016;101:1469–1478. Epub 2016/ 08/16. doi:10.3324/haematol.2016.149914
  • Iancu-Rubin C, Nasrallah CA, Atweh GF. Stathmin prevents the transition from a normal to an endomitotic cell cycle during megakaryocytic differentiation. Cell Cycle (georgetown, Tex) 2005;4:1774–1782. Epub 2005/ 11/01. doi:10.4161/cc.4.12.2171
  • Pawlikowska P, Fouchet P, Vainchenker W, Rosselli F, Naim V. Defective endomitosis during megakaryopoiesis leads to thrombocytopenia in Fanca-/- mice. Blood 2014;124:3613–3623. Epub 2014/ 09/28. doi:10.1182/blood-2014-01-551457
  • Raslova H, Baccini V, Loussaief L, Comba B, Larghero J, Debili N, Vainchenker W. Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation. Blood 2006;107:2303–2310. Epub 2005/ 11/12. doi:10.1182/blood-2005-07-3005
  • Guerriero R, Parolini I, Testa U, Samoggia P, Petrucci E, Sargiacomo M, Chelucci C, Gabbianelli M, Peschle C. Inhibition of TPO-induced MEK or mTOR activity induces opposite effects on the ploidy of human differentiating megakaryocytes. J Cell Sci 2006;119:744–752. Epub 2006/ 02/02. doi:10.1242/jcs.02784
  • Rouyez MC, Boucheron C, Gisselbrecht S, Dusanter-Fourt I, Porteu F. Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway. Mol Cell Biol 1997;17:4991–5000. Epub 1997/ 09/01. doi:10.1128/mcb.17.9.4991
  • Mazharian A, Watson SP, Severin S. Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility, and proplatelet formation. Exp Hematol 2009;37:1238–1249.e1235. Epub 2009/ 07/22. doi:10.1016/j.exphem.2009.07.006
  • Eliades A, Papadantonakis N, Matsuura S, Mi R, Bais MV, Trackman P, Ravid K. Megakaryocyte polyploidy is inhibited by lysyl oxidase propeptide. Cell Cycle (georgetown, Tex) 2013;12:1242–1250. Epub 2013/ 03/23. doi:10.4161/cc.24312
  • Eliades A, Matsuura S, Ravid K. Oxidases and reactive oxygen species during hematopoiesis: a focus on megakaryocytes. J Cell Physiol 2012;227:3355–3362. doi:10.1002/jcp.24071
  • Burstein SA, Mei RL, Henthorn J, Friese P, Turner K. Leukemia inhibitory factor and interleukin-11 promote maturation of murine and human megakaryocytes in vitro. J Cell Physiol 1992;153:305–312. Epub 1992/ 11/01. doi:10.1002/jcp.1041530210
  • Guerriero R, Mattia G, Testa U, Chelucci C, Macioce G, Casella I, Samoggia P, Peschle C, Hassan HJ. Stromal cell-derived factor 1alpha increases polyploidization of megakaryocytes generated by human hematopoietic progenitor cells. Blood 2001;97:2587–2595. Epub 2001/ 04/21. doi:10.1182/blood.v97.9.2587
  • Muraoka K, Tsuji K, Yoshida M, Ebihara Y, Yamada K, Sui X, Tanaka R, Nakahata T. Thrombopoietin-independent effect of interferon-gamma on the proliferation of human megakaryocyte progenitors. Br J Haematol 1997;98:265–273. doi:10.1046/j.1365-2141.1997.2303047.x
  • Kuter DJ, Gminski DM, Rosenberg RD. Transforming growth factor beta inhibits megakaryocyte growth and endomitosis. Blood 1992;79:619–626.
  • Giammona LM, Panuganti S, Kemper JM, Apostolidis PA, Lindsey S, Papoutsakis ET, Miller WM. Mechanistic studies on the effects of nicotinamide on megakaryocytic polyploidization and the roles of NAD+ levels and SIRT inhibition. Exp Hematol 2009;37:1340–1352.e1343. Epub 2009/ 09/01. doi:10.1016/j.exphem.2009.08.004
  • Mercher T, Cornejo MG, Sears C, Kindler T, Moore SA, Maillard I, Pear WS, Aster JC, Gilliland DG. Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell 2008;3:314–326. Epub 2008/ 09/13. doi:10.1016/j.stem.2008.07.010
  • Trinh BQ, Barengo N, Kim SB, Lee JS, Zweidler-McKay PA, Naora H. The homeobox gene DLX4 regulates erythro-megakaryocytic differentiation by stimulating IL-1beta and NF-kappaB signaling. J Cell Sci 2015;128:3055–3067. doi:10.1242/jcs.168187
  • Kosoff RE, Aslan JE, Kostyak JC, Dulaimi E, Chow HY, Prudnikova TY, Radu M, Kunapuli SP, McCarty OJ, Chernoff J. Pak2 restrains endomitosis during megakaryopoiesis and alters cytoskeleton organization. Blood 2015;125:2995–3005. Epub 2015/ 04/01. doi:10.1182/blood-2014-10-604504
  • Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, Mitani K, Chiba S, Ogawa S, Kurokawa M, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004;10:299–304. doi:10.1038/nm997
  • Antony-Debre I, Bluteau D, Itzykson R, Baccini V, Renneville A, Boehlen F, Morabito M, Droin N, Deswarte C, Chang Y, et al. MYH10 protein expression in platelets as a biomarker of RUNX1 and FLI1 alterations. Blood 2012;120:2719–2722. doi:10.1182/blood-2012-04-422352
  • Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, Favier R, Bernstein A. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 2000;13:167–177.
  • Muntean AG, Pang L, Poncz M, Dowdy SF, Blobel GA, Crispino JD. Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization. Blood 2007;109:5199–5207. Epub 2007/ 02/24. doi:10.1182/blood-2006-11-059378
  • Huang Z, Richmond TD, Muntean AG, Barber DL, Weiss MJ, Crispino JD. STAT1 promotes megakaryopoiesis downstream of GATA-1 in mice. J Clin Invest 2007;117:3890–3899. Epub 2007/ 12/07. doi:10.1172/JCI33010
  • Vilaboa N, Bermejo R, Martinez P, Bornstein R, Cales C. A novel E2 box-GATA element modulates Cdc6 transcription during human cells polyploidization. Nucleic Acids Res 2004;32:6454–6467. doi:10.1093/nar/gkh981
  • Chagraoui H, Kassouf M, Banerjee S, Goardon N, Clark K, Atzberger A, Pearce AC, Skoda RC, Ferguson DJ, Watson SP, et al. SCL-mediated regulation of the cell-cycle regulator p21 is critical for murine megakaryopoiesis. Blood 2011;118:723–735. doi:10.1182/blood-2011-01-328765
  • Kobayashi S, Teramura M, Ito K, Iwabe K, Inaba T, Mizoguchi H. Transcription factor NF-E2 is essential for the polyploidization of a human megakaryoblastic cell line, Meg-J. Biochem Biophys Res Commun 1998;247:65–69. Epub 1998/ 06/24. doi:10.1006/bbrc.1998.8736
  • Gilles L, Bluteau D, Boukour S, Chang Y, Zhang Y, Robert T, Dessen P, Debili N, Bernard OA, Vainchenker W, et al. MAL/SRF complex is involved in platelet formation and megakaryocyte migration by regulating MYL9 (MLC2) and MMP9. Blood 2009;114:4221–4232. doi:10.1182/blood-2009-03-209932
  • Cheng EC, Luo Q, Bruscia EM, Renda MJ, Troy JA, Massaro SA, Tuck D, Schulz V, Mane SM, Berliner N, et al. Role for MKL1 in megakaryocytic maturation. Blood 2009;113:2826–2834. doi:10.1182/blood-2008-09-180596
  • Ragu C, Boukour S, Elain G, Wagner-Ballon O, Raslova H, Debili N, Olson EN, Daegelen D, Vainchenker W, Bernard OA, et al. The serum response factor (SRF)/megakaryocytic acute leukemia (MAL) network participates in megakaryocyte development. Leukemia 2010;24:1227–1230. doi:10.1038/leu.2010.80
  • Smith EC, Teixeira AM, Chen RC, Wang L, Gao Y, Hahn KL, Krause DS. Induction of megakaryocyte differentiation drives nuclear accumulation and transcriptional function of MKL1 via actin polymerization and RhoA activation. Blood 2013;121:1094–1101. doi:10.1182/blood-2012-05-429993
  • Tijssen MR, Cvejic A, Joshi A, Hannah RL, Ferreira R, Forrai A, Bellissimo DC, Oram SH, Smethurst PA, Wilson NK, et al. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev Cell 2011;20:597–609. doi:10.1016/j.devcel.2011.04.008
  • Lindsey S, Papoutsakis ET. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization. Br J Haematol 2011;152:469–484. Epub 2011/ 01/14. doi:10.1111/j.1365-2141.2010.08548.x
  • Yu M, Mazor T, Huang H, Huang HT, Kathrein KL, Woo AJ, Chouinard CR, Labadorf A, Akie TE, Moran TB, et al. Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol Cell 2012;45:330–343. doi:10.1016/j.molcel.2011.11.032
  • Wilting RH, Yanover E, Heideman MR, Jacobs H, Horner J, van der Torre J, DePinho RA, Dannenberg JH. Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. Embo J 2010;29:2586–2597. Epub 2010/ 06/24. doi:10.1038/emboj.2010.136
  • Brown AS, Hong Y, de Belder A, Beacon H, Beeso J, Sherwood R, Edmonds M, Martin JF, Erusalimsky JD. Megakaryocyte ploidy and platelet changes in human diabetes and atherosclerosis. Arterioscler Thromb Vasc Biol 1997;17:802–807. doi:10.1161/01.atv.17.4.802
  • Pertuy F, Aguilar A, Strassel C, Eckly A, Freund JN, Duluc I, Gachet C, Lanza F, Leon C. Broader expression of the mouse platelet factor 4-cre transgene beyond the megakaryocyte lineage. J Thromb Haemost 2015;13:115–125. doi:10.1111/jth.12784
  • Guo BB, Allcock RJ, Mirzai B, Malherbe JA, Choudry FA, Frontini M, Chuah H, Liang J, Kavanagh SE, Howman R, et al. Megakaryocytes in myeloproliferative neoplasms have unique somatic mutations. Am J Pathol 2017;187:1512–1522. doi:10.1016/j.ajpath.2017.03.009
  • Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127:2391–2405. doi:10.1182/blood-2016-03-643544
  • Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 2017;129:667–679. doi:10.1182/blood-2016-10-695940. Epub 2016 Dec 27. Review.
  • Gilles L, Arslan AD, Marinaccio C, Wen QJ, Arya P, McNulty M, Yang Q, Zhao JC, Konstantinoff K, Lasho T, et al. Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis. J Clin Invest 2017;127:1316–1320. doi:10.1172/JCI82905
  • Van Den Berghe H. The 5q- syndrome. Scand J Haematol Supplementum 1986;45:78–81. Epub 1986/ 01/01.
  • Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008;451:335–339. doi:10.1038/nature06494
  • Schneider RK, Adema V, Heckl D, Jaras M, Mallo M, Lord AM, Chu LP, McConkey ME, Kramann R, Mullally A, et al. Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS. Cancer Cell 2014;26:509–520. doi:10.1016/j.ccr.2014.08.001
  • Ribezzo F, Snoeren IAM, Ziegler S, Stoelben J, Olofsen PA, Henic A, Ferreira MV, Chen S, Stalmann USA, Buesche G, et al. Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q- syndrome. Leukemia 2019;33:1759–1772.
  • Bath PM, Gladwin AM, Carden N, Martin JF. Megakaryocyte DNA content is increased in patients with coronary artery atherosclerosis. Cardiovasc Res 1994;28:1348–1352. doi:10.1093/cvr/28.9.1348
  • Fu W, Meng G, Yang X, Yu L, Jiang H. Bone marrow sympathetic activation regulates post-myocardial infarction megakaryocyte expansion but not platelet production. Biochem Biophys Res Commun 2019;513:99–104. doi:10.1016/j.bbrc.2019.03.160
  • Wen QJ, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider RK, Breyfogle LJ, Schultz R, Gilles L, Koppikar P, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med 2015;21:1473–1480. Epub 2015/ 11/17. doi:10.1038/nm.3995
  • Gangat N, Marinaccio C, Swords R, Watts JM, Gurbuxani S, Rademaker A, Fought AJ, Frankfurt O, Altman JK, Wen QJ, et al. Aurora kinase A inhibition provides clinical benefit, normalizes megakaryocytes and reduces bone marrow fibrosis in patients with myelofibrosis. Clin Cancer Res 2019. doi:10.1158/1078-0432.CCR-19-1005
  • Wen Q, Leung C, Huang Z, Small S, Reddi AL, Licht JD, Crispino JD. Survivin is not required for the endomitotic cell cycle of megakaryocytes. Blood 2009;114:153–156. Epub 2009/ 04/03. doi:10.1182/blood-2008-11-190801
  • Avanzi MP, Chen A, He W, Mitchell WB. Optimizing megakaryocyte polyploidization by targeting multiple pathways of cytokinesis. Transfusion 2012;52:2406–2413. doi:10.1111/j.1537-2995.2012.03711.x
  • Lannutti BJ, Blake N, Gandhi MJ, Reems JA, Drachman JG. Induction of polyploidization in leukemic cell lines and primary bone marrow by Src kinase inhibitor SU6656. Blood 2005;105:3875–3878. doi:10.1182/blood-2004-10-3934
  • Gandhi MJ, Drachman JG, Reems JA, Thorning D, Lannutti BJ. A novel strategy for generating platelet-like fragments from megakaryocytic cell lines and human progenitor cells. Blood Cells Mol Dis 2005;35:70–73. doi:10.1016/j.bcmd.2005.04.002
  • Avanzi MP, Goldberg F, Davila J, Langhi D, Chiattone C, Mitchell WB. Rho kinase inhibition drives megakaryocyte polyploidization and proplatelet formation through MYC and NFE2 downregulation. Br J Haematol 2014;164:867–876. Epub 2014/ 01/05. doi:10.1111/bjh.12709
  • Jarocha D, Vo KK, Lyde RB, Hayes V, Camire RM, Poncz M. Enhancing functional platelet release in vivo from in vitro-grown megakaryocytes using small molecule inhibitors. Blood Adv 2018;2:597–606. doi:10.1182/bloodadvances.2017010975
  • Huang H, Woo AJ, Waldon Z, Schindler Y, Moran TB, Zhu HH, Feng GS, Steen H, Cantor AB. A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation. Genes Dev 2012;26:1587–1601. Epub 2012/ 07/05. doi:10.1101/gad.192054.112
  • Potts KS, Sargeant TJ, Markham JF, Shi W, Biben C, Josefsson EC, Whitehead LW, Rogers KL, Liakhovitskaia A, Smyth GK, et al. A lineage of diploid platelet-forming cells precedes polyploid megakaryocyte formation in the mouse embryo. Blood 2014;124:2725–2729. Epub 2014/ 08/01. doi:10.1182/blood-2014-02-559468
  • Fuchs DA, McGinn SG, Cantu CL, Klein RR, Sola-Visner MC, Rimsza LM. Developmental differences in megakaryocyte size in infants and children. Am J Clin Pathol 2012;138:140–145. doi:10.1309/AJCP4EMTJYA0VGYE
  • Liu ZJ, Italiano J Jr., Ferrer-Marin F, Gutti R, Bailey M, Poterjoy B, Rimsza L, Sola-Visner M. Developmental differences in megakaryocytopoiesis are associated with up-regulated TPO signaling through mTOR and elevated GATA-1 levels in neonatal megakaryocytes. Blood 2011;117:4106–4117. Epub 2011/ 02/10. doi:10.1182/blood-2010-07-293092
  • Urban D, Pluthero FG, Christensen H, Baidya S, Rand ML, Das A, Shah PS, Chitayat D, Blanchette VS, Kahr WH. Decreased numbers of dense granules in fetal and neonatal platelets. Haematologica 2017;102:e36–e38. doi:10.3324/haematol.2016.152421
  • Baker-Groberg SM, Lattimore S, Recht M, McCarty OJ, Haley KM. Assessment of neonatal platelet adhesion, activation, and aggregation. J Thromb Haemost 2016;14:815–827. doi:10.1111/jth.13270
  • Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, Fujita K, Koike T, Harimoto K, Dohda T, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 2014;14:535–548. Epub 2014/ 02/18. doi:10.1016/j.stem.2014.01.011
  • Liu Y, Wang Y, Gao Y, Forbes JA, Qayyum R, Becker L, Cheng L, Wang ZZ. Efficient generation of megakaryocytes from human induced pluripotent stem cells using food and drug administration-approved pharmacological reagents. Stem Cells Transl Med 2015;4:309–319. Epub 2015/ 02/26. doi:10.5966/sctm.2014-0183
  • Lu SJ, Li F, Yin H, Feng Q, Kimbrel EA, Hahm E, Thon JN, Wang W, Italiano JE, Cho J, et al. Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice. Cell Res 2011;21:530–545. Epub 2011/ 01/12. doi:10.1038/cr.2011.8
  • Moreau T, Evans AL, Vasquez L, Tijssen MR, Yan Y, Trotter MW, Howard D, Colzani M, Arumugam M, Wu WH, et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun 2016;7:11208. doi:10.1038/ncomms11208
  • Liu ZJ, Hoffmeister KM, Hu Z, Mager DE, Ait-Oudhia S, Debrincat MA, Pleines I, Josefsson EC, Kile BT, Italiano J Jr., et al. Expansion of the neonatal platelet mass is achieved via an extension of platelet lifespan. Blood 2014;123:3381–3389. Epub 2014/ 03/07. doi:10.1182/blood-2013-06-508200
  • Elagib KE, Lu CH, Mosoyan G, Khalil S, Zasadzinska E, Foltz DR, Balogh P, Gru AA, Fuchs DA, Rimsza LM, et al. Neonatal expression of RNA-binding protein IGF2BP3 regulates the human fetal-adult megakaryocyte transition. J Clin Invest 2017;127:2365–2377. Epub 2017/ 05/10. doi:10.1172/JCI88936
  • Pandit SK, Westendorp B, de Bruin A. Physiological significance of polyploidization in mammalian cells. Trends Cell Biol 2013;23:556–566. Epub 2013/ 07/16. doi:10.1016/j.tcb.2013.06.002
  • Winkelmann M, Pfitzer P, Schneider W. Significance of polyploidy in megakaryocytes and other cells in health and tumor disease. Klin Wochenschr 1987;65:1115–1131. Epub 1987/ 12/01. doi:10.1007/bf01734832
  • Raslova H, Roy L, Vourc’h C, Le Couedic JP, Brison O, Metivier D, Feunteun J, Kroemer G, Debili N, Vainchenker W. Megakaryocyte polyploidization is associated with a functional gene amplification. Blood 2003;101:541–544. Epub 2002/ 10/24. doi:10.1182/blood-2002-05-1553
  • Hilpert M, Legrand C, Bluteau D, Balayn N, Betems A, Bluteau O, Villeval JL, Louache F, Gonin P, Debili N, et al. p19 INK4d controls hematopoietic stem cells in a cell-autonomous manner during genotoxic stress and through the microenvironment during aging. Stem Cell Rep 2014;3:1085–1102. doi:10.1016/j.stemcr.2014.10.005
  • Ganem NJ, Cornils H, Chiu SY, O’Rourke KP, Arnaud J, Yimlamai D, Thery M, Camargo FD, Pellman D. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 2014;158:833–848. Epub 2014/ 08/16. doi:10.1016/j.cell.2014.06.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.