593
Views
14
CrossRef citations to date
0
Altmetric
Special review series

Human platelet lysates for human cell propagation

, , , , , , , & ORCID Icon show all
Pages 152-162 | Received 26 Aug 2020, Accepted 23 Oct 2020, Published online: 29 Nov 2020

References

  • Burnouf T, Strunk D, Koh MB, Schallmoser K. Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2016;76:371–387. Epub 2015/ 11/13. doi:10.1016/j.biomaterials.2015.10.065.
  • Bieback K, Fernandez-Munoz B, Pati S, Schafer R. Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Gene Therapy. Transfusion 2019;59:3448–3460. Epub 2019/ 08/15. doi:10.1111/trf.15483.
  • Henschler R, Gabriel C, Schallmoser K, Burnouf T, Koh MBC. Human platelet lysate current standards and future developments. Transfusion 2019;59:1407–1413. Epub 2019/ 02/12. doi:10.1111/trf.15174.
  • Schallmoser K, Henschler R, Gabriel C, Koh MBC, Burnouf T. Production and quality requirements of human platelet lysate: A position statement from the working party on cellular therapies of the international society of blood transfusion. Trends Biotechnol 2020;38:13–23. Epub 2019/ 07/22. doi:10.1016/j.tibtech.2019.06.002.
  • Piersma SR, Broxterman HJ, Kapci M, de Haas RR, Hoekman K, Verheul HM, Jimenez CR. Proteomics of the TRAP-induced platelet releasate. J Proteomics 2009;72:91–109. Epub 2008/ 12/04. doi:10.1016/j.jprot.2008.10.009.
  • Macaulay IC, Carr P, Gusnanto A, Ouwehand WH, Fitzgerald D, Watkins NA. Platelet genomics and proteomics in human health and disease. J Clin Invest 2005;115:3370–3377. Epub 2005/ 12/03. doi:10.1172/JCI26885.
  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen 2008;16:585–601. Epub 2009/ 01/09.
  • Burnouf T, Goubran HA, Chen TM, Ou KL, El-Ekiaby M, Radosevic M. Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev 2013;27:77–89. Epub 2013/ 02/26. doi:10.1016/j.blre.2013.02.001.
  • Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci 2008;13:3532–3548. Epub 2008/ 05/30.
  • Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011;105(Suppl 1):S13–33. Epub 2011/ 04/12.
  • Bieback K, Fernandez-Munoz B, Pati S, Schafer R. Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Gene Therapy. Cytotherapy 2019;21:911–924. Epub 2019/ 07/17. doi:10.1016/j.jcyt.2019.06.006.
  • Schallmoser K, Strunk D. Preparation of pooled human platelet lysate (pHPL) as an efficient supplement for animal serum-free human stem cell cultures. J Vis Exp 2009. Epub 2009/ 11/03. doi:10.3791/1523.
  • Burnouf T, Barro L, Nebie O, Wu YW, Goubran H, Knutson F, Seghatchian J. Viral safety of human platelet lysate for cell therapy and regenerative medicine: moving forward, yes, but without forgetting the past. Transfus Apher Sci 2019;58:102674. Epub 2019/ 11/19. doi:10.1016/j.transci.2019.102674.
  • Blumel J, Schwantes A, Baylis SA, Stuhler A. Strategies toward virus and prion safe human platelet lysates. Transfusion 2020;60:219–220. Epub 2020/ 01/04. doi:10.1111/trf.15581.
  • Farrugia A. Safety issues of plasma-derived products for treatment of inherited bleeding disorders. Semin Thromb Hemost 2016;42:583–588. Epub 2016/ 04/15. doi:10.1055/s-0036-1571314.
  • Burnouf T. Modern plasma fractionation. Transfus Med Rev 2007;21:101–117. doi:10.1016/j.tmrv.2006.11.001.
  • Burnouf T, Radosevich M. Reducing the risk of infection from plasma products: specific preventative strategies. Blood Rev 2000;14:94–110. doi:10.1054/blre.2000.0129.
  • WHO guidelines on good manufacturing practices for blood establishments. WHO Technical Report Series No. 961. Geneva: World Health Organization; 2011 https://www.who.int/bloodproducts/publications/GMP_Bloodestablishments.pdf.
  • WHO recommendations for the production, quality control and regulation of plasma for fractionation. Technical Report Series 2007;N°941.
  • Busch MP, Kleinman SH, Nemo GJ. Current and emerging infectious risks of blood transfusions. Jama-J Am Med Assoc 2003;289:959–962. doi:10.1001/jama.289.8.959.
  • WHO guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products. WHO Technical Report Series 2004;No. 924. 1–72.
  • Note for guidance on plasma-derived medicinal products. European Agency for the Evaluation of Medicinal Products 2009;CPMP/BWP/269/95 rev.4.
  • Stahle M, Carlsson B, Le Blanc K, Korsgren O, Knutson F. Photochemical pathogen inactivation of human serum enables its large-scale application in clinical cell transplantation. Vox Sang 2010;98:e364–365. Epub 2010/ 04/24. doi:10.1111/j.1423-0410.2009.01257.x.
  • Jonsdottir-Buch S, Sigurgrimsdottir H, Lieder R, Sigurjonsson O. Expired pathogen inactivated platelet concentrates support differentiation and immunomodulation of mesenchymal stromal cells in culture. J Tissue Eng Regen Med 2014;8:374. (abstract).
  • Fazzina R, Iudicone P, Mariotti A, Fioravanti D, Procoli A, Cicchetti E, Scambia G, Bonanno G, Pierelli L. Culture of human cell lines by a pathogen-inactivated human platelet lysate. Cytotechnology 2016;68:1185–1195. doi:10.1007/s10616-015-9878-5.
  • Jonsdottir-Buch SM, Sigurgrimsdottir H, Lieder R, Sigurjonsson OE. Expired and pathogen-inactivated platelet concentrates support differentiation and immunomodulation of mesenchymal stromal cells in culture. Cell Transplant 2015;24:1545–1554. Epub 2014/ 09/10. doi:10.3727/096368914X683043.
  • Viau S, Chabrand L, Eap S, Lorant J, Rouger K, Goudaliez F, Sumian C, Delorme B. Pathogen reduction through additive-free short-wave UV light irradiation retains the optimal efficacy of human platelet lysate for the expansion of human bone marrow mesenchymal stem cells. PLoS One 2017;12:e0181406. Epub 2017/ 08/02. doi:10.1371/journal.pone.0181406.
  • Christensen C, Jonsdottir-Buch SM, Sigurjonsson OE. Effects of amotosalen treatment on human platelet lysate bioactivity: A proof-of-concept study. PLoS One 2020;15:e0220163. Epub 2020/ 04/16. doi:10.1371/journal.pone.0220163.
  • Hauser L, Roque-Afonso AM, Beyloune A, Simonet M, Deau Fischer B, Burin Des Roziers N, Mallet V, Tiberghien P, Bierling P. Hepatitis E transmission by transfusion of Intercept blood system-treated plasma. Blood 2014;123:796–797. Epub 2014/ 02/01. doi:10.1182/blood-2013-09-524348.
  • Gowland P, Fontana S, Stolz M, Andina N, Niederhauser C. Parvovirus B19 passive transmission by transfusion of intercept(R) blood system-treated platelet concentrate. Transfus Med Hemother 2016;43:198–202. Epub 2016/ 07/13. doi:10.1159/000445195.
  • Kwon SY, Kim IS, Bae JE, Kang JW, Cho YJ, Cho NS, Lee SW. Pathogen inactivation efficacy of Mirasol PRT system and intercept blood system for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma. Vox Sang 2014;107:254–260. Epub 2014/ 05/09. doi:10.1111/vox.12158.
  • Shih DTB, Chen JC, Chen WY, Kuo YP, Su CY, Burnouf T. Expansion of adipose tissue mesenchymal stromal progenitors in serum‐free medium supplemented with virally inactivated allogeneic human platelet lysate. Transfusion 2011;51:770–778. doi:10.1111/j.1537-2995.2010.02915.x.
  • Ren J, Ward D, Chen S, Tran K, Jin P, Sabatino M, Robey PG, Stroncek DF. Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum. J Transl Med 2018;16:65. Epub 2018/ 03/16. doi:10.1186/s12967-018-1400-3.
  • Dichtelmuller HO, Biesert L, Fabbrizzi F, Gajardo R, Groner A, von Hoegen I, Jorquera JI, Kempf C, Kreil TR, Pifat D, et al. Robustness of solvent/detergent treatment of plasma derivatives: a data collection from plasma protein therapeutics association member companies. Transfusion 2009;49:1931–1943. Epub 2009/ 06/06. doi:10.1111/j.1537-2995.2009.02222.x.
  • Viau S, Eap S, Chabrand L, Lagrange A, Delorme B. Viral inactivation of human platelet lysate by gamma irradiation preserves its optimal efficiency in the expansion of human bone marrow mesenchymal stromal cells. Transfusion 2019;59:1069–1079. Epub 2019/ 02/23. doi:10.1111/trf.15205.
  • Charlebois S, Canestrari E, Harris S. Characterization of a pathogen reduced human platelet lysate. Cytotherapy 2018;20:S61–S61. doi:10.1016/j.jcyt.2018.02.168.
  • Barro L, Su YT, Nebie O, Wu YW, Huang YH, Koh MB, Knutson F, Burnouf T. A double-virally-inactivated (Intercept-solvent/detergent) human platelet lysate for in vitro expansion of human mesenchymal stromal cells. Transfusion 2019. in press. Epub 2019/ 03/27. doi:10.1111/trf.15251.
  • Barro L, Nebie O, Chen MS, Wu YW, Koh MB, Knutson F, Watanabe N, Takahara M, Burnouf T. Nanofiltration of growth media supplemented with human platelet lysates for pathogen-safe xeno-free expansion of mesenchymal stromal cells. Cytotherapy 2020;22:458–472. Epub 2020/ 06/17. doi:10.1016/j.jcyt.2020.04.099.
  • Roth NJ, Dichtelmüller HO, Fabbrizzi F, Flechsig E, Gröner A, Gustafson M, Jorquera JI, Kreil TR, Misztela D, Moretti E, et al. Nanofiltration as a robust methodology contributing to viral safety of plasma-derived therapeutics. 20 years’ experience of the plasma protein manufacturers. A data collection from PPTA member companies. Transfusion (in press) 2020. doi:10.1111/trf.16022.
  • Inouye M, Burnouf T. The role of nanofiltration in the pathogen safety of biologicals: an update. Curr Nanosci 2019;15:1–10.
  • Burnouf T, Radosevich M. Nanofiltration of plasma‐derived biopharmaceutical products. Haemophilia 2003;9:24–37. doi:10.1046/j.1365-2516.2003.00701.x.
  • Caballero S, Diez JM, Belda FJ, Otegui M, Herring S, Roth NJ, Lee D, Gajardo R, Jorquera JI. Robustness of nanofiltration for increasing the viral safety margin of biological products. Biologicals 2014;42:79–85. Epub 2014/ 02/04. doi:10.1016/j.biologicals.2013.10.003.
  • Horowitz B, Prince AM, Horowitz MS, Watklevicz C. Viral safety of solvent-detergent treated blood products. Dev Biol Stand 1993;81:147–161. Epub 1993/ 01/01.
  • Shih DT, Chen JC, Chen WY, Kuo YP, Su CY, Burnouf T. Expansion of adipose tissue mesenchymal stromal progenitors in serum-free medium supplemented with virally inactivated allogeneic human platelet lysate. Transfusion 2011;51:770–778. Epub 2010/ 11/04.
  • Nims R, Plavsic M. Efficacy of electron beam for viral inactivation. J Microb Biochem Technol 2015;7:173–176.
  • Alliance GIP, Association II. 2018. A Comparison of Gamma, E-beam, X-ray and Ethylene Oxide Technologies for the Industrial Sterilization of Medical Devices and Healthcare Products, 1–49.
  • Korneyeva M., Rosenthal S. (2005) Virus Removal by Nanofiltration. In: Smales C.M., James D.C. (eds) Therapeutic Proteins. Methods in Molecular Biology™, vol 308. Humana Press. https://doi.org/10.1385/1-59259-922-2:221.
  • Plavsic M, Nims R, Wintgens M, Versteegen R. Gamma irradiation of animal serum: validation of efficacy for pathogen reduction and assessment of impacts on serum performance. BioProcessing 2016;15:1538–8786.
  • Horowitz B, Lazo A, Grossberg H, Page G, Lippin A, Swan G. Virus inactivation by solvent/detergent treatment and the manufacture of SD-plasma. Vox Sang 1998;74(Suppl 1):203–206. Epub 1998/ 10/28. doi:10.1111/j.1423-0410.1998.tb05473.x.
  • Barro L, Su YT, Nebie O, Wu YW, Huang YH, Koh MB, Knutson F, Burnouf T. A double-virally-inactivated (Intercept-solvent/detergent) human platelet lysate for in vitro expansion of human mesenchymal stromal cells. Transfusion 2019;59:2061–2073. Epub 2019/ 03/27.
  • Charlebois S, Canestrari E, Harris S. Characterization of a pathogen reduced human platelet lysate. Cytotherapy 2018;20:S61.
  • Barro L, Nebie O, Chen M-S, Wu Y-W, Koh MBC, Knutson F, Watanabe N, Takahara M, Burnouf T. Nanofiltration of growth media supplemented with human platelet lysates for pathogen-safe xeno-free expansion of mesenchymal stromal cells. Cytotherapy 2020;22:458–472.
  • Viau S, Lagrange A, Chabrand L, Lorant J, Charrier M, Rouger K, Alvarez I, Eap S, Delorme B. A highly standardized and characterized human platelet lysate for efficient and reproducible expansion of human bone marrow mesenchymal stromal cells. Cytotherapy 2019;21:738–754. Epub 2019/ 05/28. doi:10.1016/j.jcyt.2019.04.053.
  • Salmenkari H, Laitinen A, Forsgard RA, Holappa M, Linden J, Pasanen L, Korhonen M, Korpela R, Nystedt J. The use of unlicensed bone marrow-derived platelet lysate-expanded mesenchymal stromal cells in colitis: a pre-clinical study. Cytotherapy 2019;21:175–188. Epub 2019/ 01/07.
  • Karadjian M, Senger AS, Essers C, Wilkesmann S, Heller R, Fellenberg J, Simon R, Westhauser F. Human platelet lysate can replace fetal calf serum as a protein source to promote expansion and osteogenic differentiation of human bone-marrow-derived mesenchymal stromal cells. Cells 2020;9. Epub 2020/ 04/15. doi:10.3390/cells9040918.
  • Shansky YD, Sergeeva NS, Sviridova IK, Karalkin PA, Kirsanova VA, Akhmedova SA, Fomicheva KA, Shkurnikov MY, Portyannikova AY, Kaprin AD. Human platelet lysate sustains the osteogenic/adipogenic differentiation potential of adipose-derived mesenchymal stromal cells and maintains their DNA integrity in vitro. Cells Tissues Organs 2019;207:149–164. Epub 2019/ 10/09. doi:10.1159/000502813.
  • Kakudo N, Morimoto N, Ma Y, Kusumoto K. Differences between the Proliferative Effects of Human Platelet Lysate and Fetal Bovine Serum on Human Adipose-Derived Stem Cells. Cells. 2019 Oct 8;8(10):1218. doi: 10.3390/cells8101218. PMID: 31597348; PMCID: PMC6829610.
  • Gao Y, Ku NJ, Sung TC, Higuchi A, Hung CS, Lee HH, Ling QD, Cheng NC, Umezawa A, Barro L, et al. The effect of human platelet lysate on the differentiation ability of human adipose-derived stem cells cultured on ECM-coated surfaces. J Mater Chem B 2019;7:7110–7119. Epub 2019/ 09/13.
  • Dessels C, Durandt C, Pepper MS. Comparison of human platelet lysate alternatives using expired and freshly isolated platelet concentrates for adipose-derived stromal cell expansion. Platelets 2019;30:356–367. Epub 2018/ 03/20. doi:10.1080/09537104.2018.1445840.
  • Cowper M, Frazier T, Wu X, Curley L, Ma MH, Mohuiddin OA, Dietrich M, McCarthy M, Bukowska J, Gimble JM. Human platelet lysate as a functional substitute for fetal bovine serum in the culture of human adipose derived stromal/stem cells. Cells 2019;8. Epub 2019/ 07/18. doi:10.3390/cells8070724.
  • Ravenkamp M, Tchoukalova YD, Myers CE, Madsen CS, Shah MK, Zhang N, Lal D, Lott DG. The neurotrophic potential of human platelet lysate substitution for fetal bovine serum in glial induction culture medium. Neurosci Lett 2020;730:135025. Epub 2020/ 05/11. doi:10.1016/j.neulet.2020.135025.
  • Lischer M, Di Summa PG, Oranges CM, Schaefer DJ, Kalbermatten DF, Guzman R, Madduri S. Human platelet lysate stimulated adipose stem cells exhibit strong neurotrophic potency for nerve tissue engineering applications. Regen Med 2020;15:1399–1408. Epub 2020/ 04/21. doi:10.2217/rme-2020-0031.
  • Vennila R, Raja Sundari MS, Selvaraj S, Srinivasan P, Pathak S, Rupert S, Rajagopal S. Effect of human platelet lysate in differentiation of Wharton’s jelly derived mesenchymal stem cells. Endocr Metab Immune Disord Drug Targets 2019;19:1177–1191. Epub 2019/ 03/02. doi:10.2174/1871530319666190226165910.
  • Chen MS, Wang TJ, Lin HC, Burnouf T. Four types of human platelet lysate, including one virally inactivated by solvent-detergent, can be used to propagate Wharton jelly mesenchymal stromal cells. N Biotechnol 2019;49:151–160. Epub 2018/ 11/23. doi:10.1016/j.nbt.2018.11.003.
  • Kandoi S, Patra B, Vidyasekar P, Sivanesan D SV,KR, Verma RS. Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs. Sci Rep 2018;8:12439. Epub 2018/ 08/22. doi:10.1038/s41598-018-30772-4.
  • Hassan G, Bahjat M, Kasem I, Soukkarieh C, Aljamali M. Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells. Cell Mol Biol Lett 2018;23:11. Epub 2018/ 03/24.
  • de Soure AM, Fernandes-Platzgummer A, Moreira F, Lilaia C, Liu SH, Ku CP, Huang YF, Milligan W, Cabral JMS, da Silva CL. Integrated culture platform based on a human platelet lysate supplement for the isolation and scalable manufacturing of umbilical cord matrix-derived mesenchymal stem/stromal cells. J Tissue Eng Regen Med 2017;11:1630–1640. Epub 2016/ 07/23. doi:10.1002/term.2200.
  • Fazzina R, Iudicone P, Fioravanti D, Bonanno G, Totta P, Zizzari IG, Pierelli L. Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues. Stem Cell Res Ther 2016;7:122. Epub 2016/ 08/26. doi:10.1186/s13287-016-0383-3.
  • Tancharoen W, Aungsuchawan S, Pothacharoen P, Bumroongkit K, Puaninta C, Pangjaidee N, Narakornsak S, Markmee R, Laowanitwattana T, Thaojamnong C. Human platelet lysate as an alternative to fetal bovine serum for culture and endothelial differentiation of human amniotic fluid mesenchymal stem cells. Mol Med Rep 2019;19:5123–5132. Epub 2019/ 05/07.
  • Pasztorek M, Rossmanith E, Mayr C, Hauser F, Jacak J, Ebner A, Weber V, Fischer MB. Influence of platelet lysate on 2D and 3D amniotic mesenchymal stem cell cultures. Front Bioeng Biotechnol 2019;7:338. Epub 2019/ 12/06.
  • Marrazzo P, Paduano F, Palmieri F, Marrelli M, Tatullo M. Highly efficient in vitro reparative behaviour of dental pulp stem cells cultured with standardised platelet lysate supplementation. Stem Cells Int 2016;2016:7230987. Epub 2016/ 10/25. doi:10.1155/2016/7230987.
  • Abuarqoub D, Awidi A, Abuharfeil N. Comparison of osteo/odontogenic differentiation of human adult dental pulp stem cells and stem cells from apical papilla in the presence of platelet lysate. Arch Oral Biol 2015;60:1545–1553. Epub 2015/ 08/12. doi:10.1016/j.archoralbio.2015.07.007.
  • Govindasamy V, Ronald VS, Abdullah AN, Ganesan Nathan KR, Aziz ZA, Abdullah M, Zain RB, Kasim NH, Musa S, Bhonde RR. Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications. Cytotherapy 2011;13:1221–1233. Epub 2011/ 09/21. doi:10.3109/14653249.2011.602337.
  • Abuarqoub DA, Aslam N, Barham RB, Ababneh NA, Shahin DA, Al-Oweidi AA, Jafar HD, Al-Salihi MA, Awidi AS. The effect of platelet lysate in culture of PDLSCs: an in vitro comparative study. PeerJ 2019;7:e7465. Epub 2019/ 08/15.
  • Gupta P, Hall GN, Geris L, Luyten FP, Papantoniou I. Human platelet lysate improves bone forming potential of human progenitor cells expanded in microcarrier-based dynamic culture. Stem Cells Transl Med 2019;8:810–821. Epub 2019/ 05/01. doi:10.1002/sctm.18-0216.
  • Saury C, Lardenois A, Schleder C, Leroux I, Lieubeau B, David L, Charrier M, Guevel L, Viau S, Delorme B, et al. Human serum and platelet lysate are appropriate xeno-free alternatives for clinical-grade production of human MuStem cell batches. Stem Cell Res Ther 2018;9:128. Epub 2018/ 05/04. doi:10.1186/s13287-018-0852-y.
  • Paschalaki KE, Randi AM. Recent advances in endothelial colony forming cells toward their use in clinical translation. Front Med (Lausanne) 2018;5:295. Epub 2018/ 11/09. doi:10.3389/fmed.2018.00295.
  • Siegel G, Fleck E, Elser S, Hermanutz-Klein U, Waidmann M, Northoff H, Seifried E, Schafer R. Manufacture of endothelial colony-forming progenitor cells from steady-state peripheral blood leukapheresis using pooled human platelet lysate. Transfusion 2018;58:1132–1142. Epub 2018/ 02/24. doi:10.1111/trf.14541.
  • Tasev D, van Wijhe MH, Weijers EM, van Hinsbergh VW, Koolwijk P. Long-term expansion in platelet lysate increases growth of peripheral blood-derived endothelial-colony forming cells and their growth factor-induced sprouting capacity. PLoS One 2015;10:e0129935. Epub 2015/ 06/16. doi:10.1371/journal.pone.0129935.
  • Kim H, Prasain N, Vemula S, Ferkowicz MJ, Yoshimoto M, Voytik-Harbin SL, Yoder MC. Human platelet lysate improves human cord blood derived ECFC survival and vasculogenesis in three dimensional (3D) collagen matrices. Microvasc Res 2015;101:72–81. Epub 2015/ 07/01. doi:10.1016/j.mvr.2015.06.006.
  • TC S, HF L, Higuchi A, SS K, QD L, YW W, Burnouf T, Nasu M, Umezawa A, KF L, et al. Effect of cell culture biomaterials for completely xeno-free generation of human induced pluripotent stem cells. Biomaterials 2020;230:119638. Epub 2019/12/08.
  • Mistry H, Connock M, Pink J, Shyangdan D, Clar C, Royle P, Court R, Biant LC, Metcalfe A, Waugh N. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assess 2017;21:1–294. Epub 2017/ 03/01.
  • Sykes JG, Kuiper JH, Richardson JB, Roberts S, Wright KT, Kuiper NJ. Impact of human platelet lysate on the expansion and chondrogenic capacity of cultured human chondrocytes for cartilage cell therapy. Eur Cell Mater 2018;35:255–267. Epub 2018/ 05/02. doi:10.22203/eCM.v035a18.
  • Wagner ER, Parry J, Dadsetan M, Bravo D, Riester SM, van Wijnen AJ, Yaszemski MJ, Kakar S. Chondrocyte attachment, proliferation, and differentiation on three-dimensional polycaprolactone fumarate scaffolds. Tissue Eng Part A 2017;23:622–629. Epub 2017/ 04/05.
  • Rikkers M, Levato R, Malda J, Vonk LA. Importance of timing of platelet lysate-supplementation in expanding or redifferentiating human chondrocytes for chondrogenesis. Front Bioeng Biotechnol 2020;8:804. Epub 2020/ 08/01. doi:10.3389/fbioe.2020.00804.
  • Chou ML, Burnouf T, Wang TJ. Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate. PLoS One 2014;9:e99145. Epub 2014/ 06/20. doi:10.1371/journal.pone.0099145.
  • TJ W, MS C, ML C, HC L, Seghatchian J, Burnouf T. Comparison of three human platelet lysates used as supplements for in vitro expansion of corneal endothelium cells. Transfus Apher Sci 2017;56:769–773. Epub 2017/09/25.
  • Thieme D, Reuland L, Lindl T, Kruse F, Fuchsluger T. Optimized human platelet lysate as novel basis for a serum-, xeno-, and additive-free corneal endothelial cell and tissue culture. J Tissue Eng Regen Med 2018;12:557–564. Epub 2017/ 09/25. doi:10.1002/term.2574.
  • Anitua E, Muruzabal F, De la Fuente M, Merayo-Lloves J, Orive G. Effects of heat-treatment on plasma rich in growth factors-derived autologous eye drop. Exp Eye Res 2014;119:27–34. Epub 2013/ 12/19. doi:10.1016/j.exer.2013.12.005.
  • Drew VJ, Tseng CL, Seghatchian J, Burnouf T. Reflections on dry eye syndrome treatment: therapeutic role of blood products. Front Med (Lausanne) 2018;5:33. Epub 2018/ 03/13. doi:10.3389/fmed.2018.00033.
  • Qiu Y, Wang X, Zhang Y, Carr AJ, Zhu L, Xia Z, Sabokbar A. Development of a refined tenocyte expansion culture technique for tendon tissue engineering. J Tissue Eng Regen Med 2014;8:955–962. Epub 2012/ 09/26. doi:10.1002/term.1597.
  • Berger DR, Centeno CJ, Steinmetz NJ. Platelet lysates from aged donors promote human tenocyte proliferation and migration in a concentration-dependent manner. Bone Joint Res 2019;8:32–40. Epub 2019/ 02/26. doi:10.1302/2046-3758.81.BJR-2018-0164.R1.
  • Huber A, Dammeijer F, Aerts J, Vroman H. Current state of dendritic cell-based immunotherapy: opportunities for in vitro antigen loading of different DC subsets? Front Immunol 2018;9:2804. Epub 2018/ 12/19. doi:10.3389/fimmu.2018.02804.
  • Tylek T, Schilling T, Schlegelmilch K, Ries M, Rudert M, Jakob F, Groll J. Platelet lysate outperforms FCS and human serum for co-culture of primary human macrophages and hMSCs. Sci Rep 2019;9:3533. Epub 2019/ 03/07. doi:10.1038/s41598-019-40190-9.
  • Burnouf T, Burnouf PA, Wu YW, Chuang EY, Lu LS, Goubran H. Circulatory-cell-mediated nanotherapeutic approaches in disease targeting. Drug Discov Today 2018;23:934–943. Epub 2017/ 09/18.
  • Nguyen VD, Min HK, Kim DH, Kim CS, Han J, Park JO, Choi E. Macrophage-mediated delivery of multifunctional nanotherapeutics for synergistic chemo-photothermal therapy of solid tumors. ACS Appl Mater Interfaces 2020;12:10130–10141. Epub 2020/ 02/12. doi:10.1021/acsami.9b23632.
  • Haney MJ, Zhao Y, Jin YS, Li SM, Bago JR, Klyachko NL, Kabanov AV, Batrakova EV. Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy. J Neuroimmune Pharmacol. 2020 Sep;15(3):487-500. doi: 10.1007/s11481-019-09884-9. Epub 2019 Nov 13. PMID: 31722094.
  • Tang TT, Lv LL, Wang B, Cao JY, Feng Y, Li ZL, Wu M, Wang FM, Wen Y, Zhou LT, et al. Employing macrophage-derived microvesicle for kidney-targeted delivery of dexamethasone: an efficient therapeutic strategy against renal inflammation and fibrosis. Theranostics 2019;9:4740–4755. Epub 2019/ 08/02. doi:10.7150/thno.33520.
  • Svajger U. Human platelet lysate is a successful alternative serum supplement for propagation of monocyte-derived dendritic cells. Cytotherapy 2017;19:486–499. Epub 2017/ 02/22. doi:10.1016/j.jcyt.2017.01.005.
  • Tešić N, Pekle Simonič I, Roškar K, Rožman P, Švajger U. Dendritic Cells Generated in the Presence of Platelet Lysate Have a Reduced Type 1 Polarization Capacity. Immunol Invest. 2020 Apr;49(3):215-231. doi: 10.1080/08820139.2019.1624768. Epub 2019 Jun 7. PMID: 31170833.
  • Maldini CR, Ellis GI, Riley JL. CAR T cells for infection, autoimmunity and allotransplantation. Nat Rev Immunol 2018;18:605–616. Epub 2018/ 07/27. doi:10.1038/s41577-018-0042-2.
  • Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol 2019;10:128. Epub 2019/ 02/26. doi:10.3389/fimmu.2019.00128.
  • Ghassemi S, Martinez-Becerra FJ, Master AM, Richman SA, Heo D, Leferovich J, Tu Y, Canaveras JCG, Ayari A, Lu Y. Enhancing Chimeric Antigen Receptor (CAR)-T cell anti-tumor function through advanced media design. Mol Ther -Meth Clin Dev 2020. doi:10.1016/j.omtm.2020.07.008.
  • Canestrari E, Steidinger HR, McSwain B, Charlebois SJ, Dann CT. Human platelet lysate media supplement supports lentiviral transduction and expansion of human T lymphocytes while maintaining memory phenotype. J Immunol Res 2019;2019:3616120. Epub 2019/ 10/01.
  • Ghassemi S, Nunez-Cruz S, O’Connor RS, Fraietta JA, Patel PR, Scholler J, Barrett DM, Lundh SM, Davis MM, Bedoya F, et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol Res 2018;6:1100–1109. Epub 2018/ 07/22.
  • Nowakowska P, Romanski A, Miller N, Odendahl M, Bonig H, Zhang C, Seifried E, Wels WS, Tonn T. Clinical grade manufacturing of genetically modified, CAR-expressing NK-92 cells for the treatment of ErbB2-positive malignancies. Cancer Immunol Immunother 2018;67:25–38. Epub 2017/ 09/08. doi:10.1007/s00262-017-2055-2.
  • Torres Chavez A, McKenna MK, Canestrari E, Dann CT, Ramos CA, Lulla P, Leen AM, Vera JF, Watanabe N. Expanding CAR T cells in human platelet lysate renders T cells with in vivo longevity. J Immunother Cancer 2019;7:330. Epub 2019/ 11/30. doi:10.1186/s40425-019-0804-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.