216
Views
1
CrossRef citations to date
0
Altmetric
Plenary Article

Deletion of SDF-1 or CXCR4 regulates platelet activation linked to glucose metabolism and mitochondrial respiratory reserve

ORCID Icon, , , , &
Pages 536-542 | Received 10 Apr 2021, Accepted 07 Jul 2021, Published online: 04 Aug 2021

References

  • Ravi S, Chacko B, Sawada H, Kramer PA, Johnson MS, Benavides GA, O’Donnell V, Marques MB, Darley-Usmar VM. Metabolic plasticity in resting and thrombin activated platelets. PloS One 2015;10(4):e0123597. Epub 2015/ 04/16. 10.1371/journal.pone.0123597.
  • Aibibula M, Naseem KM, Sturmey RG. Glucose metabolism and metabolic flexibility in blood platelets. J Thromb Haemost 2018;16(11):2300–2314. Epub 2018/ 08/29. 10.1111/jth.14274.
  • Barile CJ, Herrmann PC, Tyvoll DA, Collman JP, Decreau RA, Bull BS. Inhibiting platelet-stimulated blood coagulation by inhibition of mitochondrial respiration. Proc Natl Acad Sci U S A 2012;109(7):2539–2543. Epub 2012/ 02/07. 10.1073/pnas.1120645109.
  • Rusak T, Tomasiak M, Ciborowski M. Peroxynitrite can affect platelet responses by inhibiting energy production. Acta biochimica Polonica 2006;53(4):769–776. Epub 2006/ 10/28. 10.18388/abp.2006_3305.
  • Yamagishi SI, Edelstein D, Du XL, Brownlee M. Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction. Diabetes 2001;50(6):1491–1494. Epub 2001/ 05/26. 10.2337/diabetes.50.6.1491.
  • Fidler TP, Marti A, Gerth K, Middleton EA, Campbell RA, Rondina MT, Weyrich AS, Abel ED. Glucose metabolism is required for platelet hyperactivation in a murine model of type 1 diabetes. Diabetes 2019;68(5):932–938. Epub 2019/ 02/16. 10.2337/db18-0981.
  • Craik JD, Stewart M, Cheeseman CI. GLUT-3 (brain-type) glucose transporter polypeptides in human blood platelets. Thromb Res 1995;79(5–6):461–469. Epub 1995/ 09/15. 10.1016/0049-3848(95)00136-F.
  • Heijnen HF, Oorschot V, Sixma JJ, Slot JW, James DE. Thrombin stimulates glucose transport in human platelets via the translocation of the glucose transporter GLUT-3 from alpha-granules to the cell surface. J Cell Biol 1997;138(2):323–330. Epub 1997/ 07/28. 10.1083/jcb.138.2.323.
  • Fidler TP, Campbell RA, Funari T, Dunne N, Balderas Angeles E, Middleton EA, Chaudhuri D, Weyrich AS, Abel ED. Deletion of GLUT1 and GLUT3 reveals multiple roles for glucose metabolism in platelet and megakaryocyte function. Cell Rep 2017;20(4):881–894. Epub 2017/ 07/27. 10.1016/j.celrep.2017.06.083.
  • Massberg S, Konrad I, Schürzinger K, Lorenz M, Schneider S, Zohlnhoefer D, Hoppe K, Schiemann M, Kennerknecht E, Sauer S, et al. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 2006;203(5):1221–1233. Epub 2006/ 04/19. 10.1084/jem.20051772.
  • Stellos K, Langer H, Daub K, Schoenberger T, Gauss A, Geisler T, Bigalke B, Mueller I, Schumm M, Schaefer I, et al. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 2008;117:206–215. Epub 2007/ 12/19. 10.1161/CIRCULATIONAHA.107.714691.
  • Chatterjee M, Huang Z, Zhang W, Jiang L, Hultenby K, Zhu L, Hu H, Nilsson GP, Li N. Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood 2011;117(14):3907–3911. Epub 2011/ 02/19. 10.1182/blood-2010-12-327007.
  • Chatterjee M, Gawaz M. Platelet-derived CXCL12 (SDF-1α): basic mechanisms and clinical implications. J Thromb Haemost 2013;11(11):1954–1967. Epub 2013/ 09/13. 10.1111/jth.12404.
  • Chatterjee M, Seizer P, Borst O, Schönberger T, Mack A, Geisler T, Langer HF, May AE, Vogel S, Lang F, et al. SDF-1α induces differential trafficking of CXCR4-CXCR7 involving cyclophilin A, CXCR7 ubiquitination and promotes platelet survival. Faseb J 2014;28(7):2864–2878. Epub 2014/ 03/29. 10.1096/fj.14-249730.
  • Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, Hooper AT, Amano H, Avecilla ST, Heissig B, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 2006;12(5):557–567. Epub 2006/ 05/02. 10.1038/nm1400.
  • Abi-Younes S, Sauty A, Mach F, Sukhova GK, Libby P, Luster AD. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res 2000;86(2):131–138. Epub 2000/ 02/10. 10.1161/01.RES.86.2.131.
  • Rafii S, Cao Z, Lis R, Siempos II, Chavez D, Shido K, Rabbany SY, Ding BS. Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nat Cell Biol 2015;17:123–136. Epub 2015/ 01/27.
  • Garcia-Souza LF, Oliveira MF. Mitochondria: biological roles in platelet physiology and pathology. Int J Biochem Cell Biol 2014;50:156–160. Epub 2014/ 02/27. 10.1016/j.biocel.2014.02.015.
  • Messina-Graham S, Broxmeyer H. SDF-1/CXCL12 modulates mitochondrial respiration of immature blood cells in a bi-phasic manner. Blood Cells Mol Dis 2016;58:13–18. Epub 2016/ 04/14. 10.1016/j.bcmd.2016.01.008.
  • Shin J, Fukuhara A, Onodera T, Kita S, Yokoyama C, Otsuki M, Shimomura I. SDF-1 is an autocrine insulin-desensitizing factor in adipocytes. Diabetes 2018;67(6):1068–1078. Epub 2018/ 03/28. 10.2337/db17-0706.
  • Li Y, Li R, Feng Z, Wan Q, Wu J. Linagliptin regulates the mitochondrial respiratory reserve to alter platelet activation and arterial thrombosis. Front Pharmacol 2020;11:585612. Epub 2020/ 12/18. 10.3389/fphar.2020.585612.
  • Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2014;2:206–210. Epub 2014/ 02/05. 10.1016/j.redox.2013.12.026.
  • Walsh TG, Harper MT, Aw P. SDF-1α is a novel autocrine activator of platelets operating through its receptor CXCR4. Cell Signal 2015;27(1):37–46. Epub 2014/ 10/07. 10.1016/j.cellsig.2014.09.021.
  • Gear AR, Suttitanamongkol S, Viisoreanu D, Polanowska-Grabowska RK, Raha S, Camerini D. Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function. Blood 2001;97(4):937–945. Epub 2001/ 02/13. 10.1182/blood.V97.4.937.
  • Kowalska MA, Ratajczak MZ, Majka M, Jin J, Kunapuli S, Brass L, Poncz M. Stromal cell-derived factor-1 and macrophage-derived chemokine: 2 chemokines that activate platelets. Blood 2000;96(1):50–57. Epub 2000/ 07/13. 10.1182/blood.V96.1.50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.