754
Views
5
CrossRef citations to date
0
Altmetric
Articles

The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1052-1064 | Received 11 Oct 2021, Accepted 09 Feb 2022, Published online: 14 Mar 2022

References

  • Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, Malek L, Postula M, et al. The potential role of platelet-related microRNAs in the development of cardiovascular events in high-risk populations, including diabetic patients: a review. Front. Endocrinol 2018;9:74. doi:10.3389/fendo.2018.00074
  • Pordzik J, Jakubik D, Jarosz-Popek J, Wicik Z, Eyileten C, De Rosa S, Indolfi C, Siller-Matula JM, Czajka P, Postula M, et al. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: bioinformatic analysis and review. Cardiovascular Diabetol. 2019;18(1). doi:10.1186/s12933-019-0918-x
  • Eyileten C, Wicik Z, De Rosa S, Mirowska-Guzel D, Soplinska A, Indolfi C, Jastrzebska-Kurkowska I, Czlonkowska A, Postula M, et al. MicroRNAs as diagnostic and prognostic biomarkers in ischemic stroke—A comprehensive review and bioinformatic analysis. Cells 2018;7:249. doi:10.3390/cells7120249
  • Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int. J. Mol. Sci 2016;17:1712. doi:10.3390/ijms17101712
  • Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M, Galas DJ, Wang K, et al. The MicroRNA spectrum in 12 body fluids. Clin. Chem. 2010;56:1733–1741. doi:10.1373/clinchem.2010.147405
  • Choi J-L, Li S, Han J-Y. Platelet function tests: a review of progresses in clinical application. BioMed Res. Int. 2014;2014:1–7.
  • Edelstein LC, McKenzie SE, Shaw C, Holinstat MA, Kunapuli SP, Bray PF, et al. MicroRNAs in platelet production and activation. J. Thromb. Haemost 2013;11 Suppl 1:340–350. doi:10.1111/jth.12214
  • Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA. Protein synthesis by platelets: historical and new perspectives. J. Thromb. Haemost 2009;7(241–246). doi:10.1111/j.1538-7836.2008.03211.x
  • Sunderland N, Skroblin, P, Barwari, T, Huntley, RP, Lu, R, Joshi, A, Lovering, RC, and Mayr, M MicroRNA biomarkers and platelet reactivity: the clot thickens. Circ. Res 2017;120 2:418–435. doi:10.1161/CIRCRESAHA.116.309303
  • Angénieux C, Maître B, Eckly A, Lanza F, Gachet C, de la Salle H, et al. Time-dependent decay of mRNA and Ribosomal RNA during platelet aging and its correlation with translation activity. PLoS One 2016;11(1):e0148064. doi:10.1371/journal.pone.0148064
  • Gasecka A, Nieuwland R, Budnik M, Dignat‐George F, Eyileten C, Harrison P, Lacroix R, Leroyer A, Opolski G, Pluta K, et al. Ticagrelor attenuates the increase of extracellular vesicle concentrations in plasma after acute myocardial infarction compared to clopidogrel. Journal of Thrombosis and Haemostasis 2020;18(3):609–623. doi:10.1111/jth.14689
  • Gasecka A, Nieuwland R, Budnik M, Dignat-George F, Eyileten C, Harrison P, Huczek Z, Kapłon-Cieślicka A, Lacroix R, Opolski G, et al. Randomized controlled trial protocol to investigate the antiplatelet therapy effect on extracellular vesicles (AFFECT EV) in acute myocardial infarction. Platelets 2020;31(1):26–32. doi:10.1080/09537104.2018.1557616
  • Sabatino J, Wicik Z, De Rosa S, Eyileten C, Jakubik D, Spaccarotella C, Mongiardo A, Postula M, Indolfi C, et al. MicroRNAs fingerprint of bicuspid aortic valve. Journal of Molecular and Cellular Cardiology 2019;134:98–106. doi:10.1016/j.yjmcc.2019.07.001
  • Palacios-Acedo AL, Mège D, Crescence L, Dubois C, and Panicot-Dubois L, Platelets thrombo-inflammation, and cancer: collaborating with the enemy. Front. Immunol 2019;10:1805.
  • Lebas H, Yahiaoui K, Martos R, Boulaftali Y. Platelets are at the nexus of vascular diseases. Front Cardiovasc Med 2019;6:132. doi:10.3389/fcvm.2019.00132
  • Valgimigli M, Bueno H, Byrne RA, Collet J-P, Costa F, Jeppsson A, Jüni P, Kastrati A, Kolh P, Mauri L, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the task force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J 2018;39:213–260. doi:10.1093/eurheartj/ehx419
  • Kaudewitz D, Skroblin P, Bender LH, Barwari T, Willeit P, Pechlaner R, Sunderland NP, Willeit K, Morton AC, Armstrong PC, et al. Association of MicroRNAs and YRNAs with platelet function. Circulation Res. 2016;118(3):420–432. doi:10.1161/CIRCRESAHA.114.305663
  • Duan X, Zhan Q, Song B, Zeng S, Zhou J, Long Y, Lu J, Li Z, Yuan M, Chen X, et al. Detection of platelet microRNA expression in patients with diabetes mellitus with or without ischemic stroke. J. Diab. Complications 2014;28:705–710. doi:10.1016/j.jdiacomp.2014.04.012
  • Shi R, Ge L, Zhou X, Ji W-J, Lu R-Y, Zhang -Y-Y, Zeng S, Liu X, Zhao J-H, Zhang W-C, et al. Decreased platelet miR-223 expression is associated with high on-clopidogrel platelet reactivity. Thromb. Res 2013;131:508–513. doi:10.1016/j.thromres.2013.02.015
  • Li S, Guo LZ, Kim MH, Han J-Y, Serebruany V. Platelet microRNA for predicting acute myocardial infarction. J. Thrombosis Thrombolysis 2017;44(556–564). doi:10.1007/s11239-017-1537-6
  • Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc 2009;4(1184–1191). doi:10.1038/nprot.2009.97
  • Palasca O, Santos A, Stolte C, Gorodkin J, Jensen LJ. TISSUES 2.0: an integrative web resource on mammalian tissue expression. Database 2018;2018. doi:10.1093/database/bay003
  • Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, Calin GA, Bemis L, et al. The multiMiR R package and database: integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Research 2014;42:e133–e133. doi:10.1093/nar/gku631
  • Gustavsen JA, Pai S, Isserlin R, Demchak B, Pico AR. RCy3: network biology using Cytoscape from within R. F1000Research 2019;8(1774). doi:10.12688/f1000research.20887.2
  • Wicik Z, Jales Neto LH, Guzman LEF, Pavão R, Takayama L, Caparbo VF, Lopes NHM, Pereira AC, Pereira RMR, et al. The crosstalk between bone metabolism, lncRNAs, microRNAs and mRNAs in coronary artery calcification. Genomics 2020;113:503–513. doi:10.1016/j.ygeno.2020.09.041
  • Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J. Proteome Res 2019;18(623–632). doi:10.1021/acs.jproteome.8b00702
  • Yu G, He Q-Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Molecular BioSystems 2016;12(477–479). doi:10.1039/C5MB00663E
  • Holger, JD OneR: one rule machine learning classification algorithm with enhancements. Available from: https://CRAN.R-project.org/package=OneR
  • Yao X, Shen H, Cao F, He H, Li B, Zhang H, and Li, Z. Bioinformatics analysis reveals crosstalk among platelets, immune cells, and the glomerulus that may play an important role in the development of diabetic nephropathy. Front. Med 8 657918 2021.
  • Almazni I, Stapley RJ, Khan AO, Morgan NV. A comprehensive bioinformatic analysis of 126 patients with an inherited platelet disorder to identify both sequence and copy number genetic variants. Hum. Mutat 2020;41:1848–1865. doi:10.1002/humu.24114
  • Simon LM, Edelstein LC, Nagalla S, Woodley AB, Chen ES, Kong X, Ma L, Fortina P, Kunapuli S, Holinstat M, et al. Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 2014;123(16):e37. doi:10.1182/blood-2013-12-544692
  • Boyanova D, Nilla S, Birschmann I, Dandekar T, Dittrich M. PlateletWeb: a systems biologic analysis of signaling networks in human platelets. Blood 2012;119:e22–e34. doi:10.1182/blood-2011-10-387308
  • Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, Siller-Matula JM, Filipiak KJ, Postula M, et al. MicroRNA as potential biomarkers of platelet function on antiplatelet therapy: a review. Front. Physiol 2021;12:652579. doi:10.3389/fphys.2021.652579
  • Aradi D, Komócsi A, Vorobcsuk A, Rideg O, Tőkés-Füzesi M, Magyarlaki T, Horváth IG, Serebruany VL, et al. Prognostic significance of high on-clopidogrel platelet reactivity after percutaneous coronary intervention: systematic review and meta-analysis. Am. Heart J. 2010;160:543–551. doi:10.1016/j.ahj.2010.06.004
  • Parker WAE, Schulte C, Barwari T, Phoenix F, Pearson SM, Mayr M, Grant PJ, Storey RF, Ajjan RA, et al. Aspirin, clopidogrel and prasugrel monotherapy in patients with type 2 diabetes mellitus: a double-blind randomised controlled trial of the effects on thrombotic markers and microRNA levels. Cardiovasc. Diabetol 2020;19(3). doi:10.1186/s12933-019-0981-3
  • Chen Y-C, Lin F-Y, Lin Y-W, Cheng S-M, Chang -C-C, Lin R-H, Chuang C-L, Sheu J-S, Chen S-M, Tsai C-S, et al. Platelet MicroRNA 365-3p expression correlates with high on-treatment platelet reactivity in coronary artery disease patients. Cardiovascular Drugs and Therapy 2019;33(2):129–137. doi:10.1007/s10557-019-06855-3
  • Galeano-Otero I, Del Toro R, Guisado A, Díaz I, and Mayoral-González I. Circulating miR-320a as a predictive biomarker for left ventricular remodelling in STEMI patients undergoing primary percutaneous coronary intervention. J. Clin. Med. Res 2020;9(4):1051.
  • Jakob P, Kacprowski T, Briand-Schumacher S, Heg D, Klingenberg R, Stähli BE, Jaguszewski M, Rodondi N, Nanchen D, Räber L, et al. Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction. Eur. Heart J 2017;38:511–515. doi:10.1093/eurheartj/ehw563
  • Zhelankin AV, Vasiliev SV, Stonogina DA, Babalyan KA, Sharova EI, Doludin YV, Shchekochikhin DY, Generozov EV, Akselrod AS, et al. Elevated plasma levels of circulating extracellular miR-320a-3p in patients with paroxysmal atrial fibrillation. Int. J. Mol. Sci 2020;21:3485. doi:10.3390/ijms21103485
  • Bauriedel G, Skowasch D, Schneider M, Andrié R, Jabs A, Lüderitz B, et al. Antiplatelet effects of angiotensin-converting enzyme inhibitors compared with aspirin and clopidogrel: a pilot study with whole-blood aggregometry. Am. Heart J 2003;145:343–348. doi:10.1067/mhj.2003.22
  • Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L, Chen J, McKnight GS, López JA, Yang L, et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 2011;117(19):5189–5197. doi:10.1182/blood-2010-09-299719
  • Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), αvβ3 Integrin, and GPIbα. Journal of Experimental Medicine 1998;187(329–339). doi:10.1084/jem.187.3.329
  • Gidlöf O, van der Brug M, Öhman J, Gilje P, Olde B, Wahlestedt C, Erlinge D, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 2013;121:3908–3917. doi:10.1182/blood-2012-10-461798
  • de Freitas RCC, Bortolin RH, Lopes MB, Hirata MH, Hirata RDC, Silbiger VN, Luchessi AD, et al. Integrated analysis of miRNA and mRNA gene expression microarrays: influence on platelet reactivity, clopidogrel response and drug-induced toxicity. Gene 2016;593:172–178. doi:10.1016/j.gene.2016.08.028
  • Badacz R, Kleczyński P, Legutko J, Żmudka K, Gacoń J, Przewłocki T, Kabłak-Ziembicka A, et al. Expression of miR-1-3p, miR-16-5p and miR-122-5p as possible risk factors of secondary cardiovascular events. Biomedicines 2021;9(8):1055. doi:10.3390/biomedicines9081055
  • Wakabayashi I, Sotoda Y, and Eguchi R. Contribution of platelet-derived microRNAs to serum microRNAs in healthy men. Platelets 2021;32(7):984–987.
  • Wang X, Sundquist K, Svensson PJ, Rastkhani H, Palmér K, Memon AA, Sundquist J, Zöller B, et al. Association of recurrent venous thromboembolism and circulating microRNAs. Clin. Epigenetics 2019;11. doi:10.1186/s13148-019-0627-z
  • Bye A, Røsjø H, Nauman J, Silva GJJ, Follestad T, Omland T, Wisløff U, et al. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals - The HUNT study. J. Mol. Cell. Cardiol 2016;97:162–168. doi:10.1016/j.yjmcc.2016.05.009
  • Binderup HG, Houlind K, Madsen JS, Brasen CL. Aspirin resistance may be identified by miR-92a in plasma combined with platelet distribution width. Clin. Biochem 2016;49(1167–1172). doi:10.1016/j.clinbiochem.2016.04.017
  • Binderup HG, Houlind K, Brasen CL, Madsen JS. Identification of aspirin resistance using a PDW-miR92a-score: validation in an intermittent claudication cohort. Clin. Biochem 2019;64(30–36). doi:10.1016/j.clinbiochem.2018.12.009
  • Stojkovic S, Jurisic M, Kopp CW, Koppensteiner R, Huber K, Wojta J, Gremmel T, et al. Circulating microRNAs identify patients at increased risk of in-stent restenosis after peripheral angioplasty with stent implantation. Atherosclerosis 2018;269:197–203. doi:10.1016/j.atherosclerosis.2018.01.020
  • Zhang Y, Cheng J, Cheng F, Wu C, Zhang J, and Ren X. Circulating endothelial microparticles and miR-92a in acute myocardial infarction. Biosci. Rep. 2017;37(2):BSR20170047.
  • Liu J, Li S-F, Lee C-Y, Song J-X, Zhang F, Cui Y-X, Chen H, et al. Circulating microRNAs as potential biomarkers for unstable angina. Int. J. Clin. Exp. Pathol. 2017;10:9073–9083.
  • Jansen F, Yang X, Proebsting S, Hoelscher M, Przybilla D, Baumann K, Schmitz T, Dolf A, Endl E, Franklin BS, et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J. Am. Heart Assoc. 2014;3:e001249. doi:10.1161/JAHA.114.001249
  • Jankowska KI, Sauna ZE, Atreya CD. Role of microRNAs in hemophilia and thrombosis in humans. Int. J. Mol. Sci. 2020;21:3598. doi:10.3390/ijms21103598
  • Mo J, Zhang D, Yang R. MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1. Biosci. Rep. 2016;36. doi:10.1042/BSR20160139
  • Qin J, Liang H, Shi D, Dai J, Xu Z, Chen D, Chen X, Jiang Q, et al. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J. Thromb. Thrombolysis. 2015;39:215–221. doi:10.1007/s11239-014-1131-0
  • Garabet L, Ghanima W, Rangberg A, Teruel-Montoya R, Martinez C, Lozano ML, Nystrand CF, Bussel JB, Sandset PM, Jonassen CM, et al. Circulating microRNAs in patients with immune thrombocytopenia before and after treatment with thrombopoietin-receptor agonists. Platelets 2020;31:198–205. doi:10.1080/09537104.2019.1585527
  • Wang Y, Zhang C-X, Ge S-L, Gong W-H. CTBP1‑AS2 inhibits proliferation and induces autophagy in ox‑LDL‑stimulated vascular smooth muscle cells by regulating miR‑195‑5p/ATG14. Int. J. Mol. Med 2020;46(839–848). doi:10.3892/ijmm.2020.4624
  • Basak I, Bhatlekar S, Manne BK, Stoller M, and Hugo S. miR-15a-5p regulates expression of multiple proteins in the megakaryocyte GPVI signaling pathway. Journal of Thrombosis and Haemostasis 2019;17:511–524. doi:10.1111/jth.14382
  • Li H, Zhang H-M, Fan L-J, Li -H-H, Peng Z-T, Li J-P, Zhang X-Y, Xiang Y, Gu C-J, Liao X-H, et al. STAT3/miR-15a-5p/CX3CL1 loop regulates proliferation and migration of vascular endothelial cells in atherosclerosis. Int. J. Med. Sci. 2021;18:964–974. doi:10.7150/ijms.49460
  • Xu S, Pan X, Mao L, Pan H, Xu W, Hu Y, Yu X, Chen Z, Qian S, Ye Y, et al. Phospho-Tyr705 of STAT3 is a therapeutic target for sepsis through regulating inflammation and coagulation. Cell Commun. Signal. 2020;18:104. doi:10.1186/s12964-020-00603-z
  • Becker KC, Kwee LC, Neely ML, Grass E, Jakubowski JA, Fox KAA, White HD, Gregory SG, Gurbel PA, Carvalho LDP, et al. Circulating MicroRNA profiling in non-ST elevated coronary artery syndrome highlights genomic associations with serial platelet reactivity measurements. Sci. Rep 2020;10:6169. doi:10.1038/s41598-020-63263-6
  • Jiao Y, et al. Platelet-derived exosomes promote neutrophil extracellular trap formation during septic shock. Crit. Care 2020;24:380. doi:10.1186/s13054-020-03082-3
  • Guidetti GF, Canobbio I, Torti M. PI3K/Akt in platelet integrin signaling and implications in thrombosis. Adv. Biol. Regul 2015;59(36–52). doi:10.1016/j.jbior.2015.06.001
  • Feng Q, Li X, Qin X, Yu C, Jin Y, Qian X, et al. PTEN inhibitor improves vascular remodeling and cardiac function after myocardial infarction through PI3k/Akt/VEGF signaling pathway. Molecular Medicine 2020;26:1–9. doi:10.1186/s10020-020-00241-8
  • Liang T, Gao F, Chen J. Role of PTEN-less in cardiac injury, hypertrophy and regeneration. Cell Regeneration 2021;10:1–11. doi:10.1186/s13619-021-00087-3
  • Boilard E, and Nigrovic PA. Chapter 16 - Platelets. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, and O’Dell JR, editors. Kelley and firestein’s textbook of rheumatology (Tenth Edition). US: Elsevier; 2017. p. 264–273.e3.
  • Kut C, Mac Gabhann F, Popel AS. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Brit. J. Cancer. 2007;97:978–985. doi:10.1038/sj.bjc.6603923
  • Etulain J, Mena HA, Negrotto S, Schattner M. Stimulation of PAR-1 or PAR-4 promotes similar pattern of VEGF and endostatin release and pro-angiogenic responses mediated by human platelets. Platelets 2015;26:799–804. doi:10.3109/09537104.2015.1051953
  • Bambace NM, Levis JE, Holmes CE. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets 2010;21:85–93. doi:10.3109/09537100903470298
  • Zangi L, Lui KO, von Gise A, Ma Q, Ebina W, Ptaszek LM, Später D, Xu H, Tabebordbar M, Gorbatov R, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol 2013;31:898–907. doi:10.1038/nbt.2682
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev 2011;75:50–83. doi:10.1128/MMBR.00031-10
  • Yan R, Li S, Dai K. The critical roles of cyclic AMP/cyclic AMP-dependent protein kinase in platelet physiology. Front. Biol. China 2008;4:7–14. doi:10.1007/s11515-008-0098-7
  • Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, Narita A, Konuma T, Yamamoto K, Akiyama M, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet 2021;53:1415–1424. doi:10.1038/s41588-021-00931-x
  • Visconte C, Canino J, Guidetti GF, Zarà M, Seppi C, Abubaker AA, Pula G, Torti M, Canobbio I, et al. Amyloid precursor protein is required for in vitro platelet adhesion to amyloid peptides and potentiation of thrombus formation. Cell. Signal. 2018;52:95–102. doi:10.1016/j.cellsig.2018.08.017
  • Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh Y, Kucheryavykh L. Platelet-generated amyloid beta peptides in Alzheimer’s disease and glaucoma. Histol. Histopathol 2019;34:843–856. doi:10.14670/HH-18-111
  • Kucheryavykh LY, Kucheryavykh YV, Washington AV, Inyushin MY. Amyloid beta peptide is released during thrombosis in the skin. Int. J. Mol. Sci. 2018;19:1705. doi:10.3390/ijms19061705
  • Evin G, Li Q-X. Platelets and Alzheimer’s disease: potential of APP as a biomarker. World J Psychiatry 2012;2:102–113. doi:10.5498/wjp.v2.i6.102
  • Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell T, Washicosky KJ, György B, Breakefield XO, Tanzi RE, Moir RD, et al. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 2018;99(1):56–63.e3. doi:10.1016/j.neuron.2018.06.030
  • Wicik Z, Eyileten C, Jakubik D, Simões SN, Martins DC Jr, Pavão R, Siller-Matula JM, and Postula M. ACE2 Interaction Networks in COVID-19: A Physiological Framework for Prediction of Outcome in Patients with Cardiovascular Risk Factors. J. Clin. Med. Res. 2020;9(11):3743 .
  • Buoso E, Lanni C, Schettini G, Govoni S, Racchi M. beta-Amyloid precursor protein metabolism: focus on the functions and degradation of its intracellular domain. Pharmacol. Res 2010;62:308–317. doi:10.1016/j.phrs.2010.05.002
  • Buoso E, Biundo F, Lanni C, Schettini G, Govoni S, Racchi M, et al. AβPP intracellular C-terminal domain function is related to its degradation processes. J. Alzheimers. Dis. 2012;30:393–405. doi:10.3233/JAD-2012-111961
  • Korhan P, Yılmaz Y, Bağırsakçı E, Güneş A, Topel H, Carr BI, Atabey N, et al. Pleiotropic effects of heparins: from clinical applications to molecular mechanisms in hepatocellular carcinoma. Canadian Journal of Gastroenterology & Hepatology 2018;2018:1–8. doi:10.1155/2018/7568742
  • Hondermarck H, Bartlett NW, and Nurcombe W. The role of growth factor receptors in viral infections: An opportunity for drug repurposing against emerging viral diseases such as COVID-19? FASEB Bioadv. 2020;296–303. doi:10.1096/fba.2020-00015
  • Dupuis M, Severin S, S, Noirrit-Esclassan E, Arnal JF, Payrastre B, and Valéra MC. Effects of estrogens on platelets and megakaryocytes. Int. J. Mol. Sci. 2019;20:3111. doi:10.3390/ijms20123111
  • Scarabin P-Y, Oger E, Plu-Bureau G; & EStrogen and THromboEmbolism Risk Study Group. Differential association of oral and transdermal oestrogen-replacement therapy with venous thromboembolism risk. Lancet 2003;362:428–432.
  • Kuhl H. Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric 2005;8(Suppl 1):3–63. doi:10.1080/13697130500148875
  • Liu G-Y, et al. Tissue array for Tp53, C-myc, CCND1 gene over-expression in different tumors. World J. Gastroenterol 2008;14:7199–7207. doi:10.3748/wjg.14.7199
  • Xu L, Xu F, Kong H, Zhao M, Ye Y, Zhang Y, et al. Effects of reduced platelet count on the prognosis for patients with non-small cell lung cancer treated with EGFR-TKI: a retrospective study. BMC Cancer 2020;20(1):1–10. doi:10.1186/s12885-020-07650-2
  • Pedersen LM, Milman N. Prognostic significance of thrombocytosis in patients with primary lung cancer. Eur. Respir. J. 1996;9:1826–1830. doi:10.1183/09031936.96.09091826
  • Hyslop SR, Alexander M, Thai AA, Kersbergen A, Kueh AJ, Herold MJ, Corbin J, Gangatirkar P, Ng AP, Solomon BJ, et al. Targeting platelets for improved outcome in KRAS -driven lung adenocarcinoma. Oncogene 2020;39:5177–5186. doi:10.1038/s41388-020-1357-6
  • Guo BB, Linden MD, Fuller KA, Phillips M, Mirzai B, Wilson L, Chuah H, Liang J, Howman R, Grove CS, et al. Platelets in myeloproliferative neoplasms have a distinct transcript signature in the presence of marrow fibrosis. Br. J. Haematol. 2020;188:272–282. doi:10.1111/bjh.16152
  • Takayama N, et al. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J. Exp. Med. 2010;207:2817–2830. doi:10.1084/jem.20100844
  • Behrens MI, Lendon C, Roe CM. A common biological mechanism in cancer and Alzheimer’s disease? Curr. Alzheimer Res 2009;6:196. doi:10.2174/156720509788486608
  • Mohammed T, Singh M, Tiu JG, Kim AS. Etiology and management of hypertension in patients with cancer. Cardio-Oncology 2021;7. doi:10.1186/s40959-021-00101-2
  • Elie Mouhayar AS. Hypertension in cancer patients. Tex. Heart Inst. J. 2011;38:263.
  • Tini G, Sarocchi M, Tocci G, Arboscello E, Ghigliotti G, Novo G, Brunelli C, Lenihan D, Volpe M, Spallarossa P, et al. Arterial hypertension in cancer: the elephant in the room. Int. J. Cardiol 2019;281:133–139. doi:10.1016/j.ijcard.2019.01.082
  • Milan A, Puglisi E, Ferrari L, Bruno G, Losano I, Veglio F, et al. Arterial hypertension and cancer. Int. J. Cancer. 2014;134:2269–2277. doi:10.1002/ijc.28334
  • Stampfer MJ. Cardiovascular disease and Alzheimer’s disease: common links. J. Intern. Med 2006;260:211–223. doi:10.1111/j.1365-2796.2006.01687.x
  • Tini G, Scagliola R, Monacelli F, La Malfa G, Porto I, Brunelli C, Rosa GM, et al. Alzheimer’s disease and cardiovascular disease: a particular association. Cardiol. Res. Pract 2020;2020:1–10. doi:10.1155/2020/2617970
  • Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A, Avan A, et al. Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J. Cell. Biochem. 2017;118:2502–2515. doi:10.1002/jcb.25943
  • Eyileten C, Sharif L, Wicik Z, Jakubik D, Jarosz-Popek J, Soplinska A, Postula M, Czlonkowska A, Kaplon-Cieslicka A, Mirowska-Guzel D, et al. The relation of the brain-derived neurotrophic factor with micrornas in neurodegenerative diseases and ischemic stroke. Mol. Neurobiol. 2021;58:329–347. doi:10.1007/s12035-020-02101-2
  • Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RC-M. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int. J. Mol. Sci. 2019;20:257. doi:10.3390/ijms20020257
  • Serra-Millàs M, López-Vílchez I, Navarro V, Galán A-M, Escolar G, Penadés R, Catalán R, Fañanás L, Arias B, Gastó C, et al. Changes in plasma and platelet BDNF levels induced by S-citalopram in major depression. Psychopharmacology 2011;216(1):1–8. doi:10.1007/s00213-011-2180-0
  • Eyileten C, Mirowska-Guzel D, Milanowski L, Zaremba M, Rosiak M, Cudna A, Kaplon-Cieslicka A, Opolski G, Filipiak KJ, Malek L, et al. Serum brain-derived neurotrophic factor is related to platelet reactivity and metformin treatment in adult patients with Type 2 diabetes Mellitus. Can J Diabetes. 2019;43(1):19–26. doi:10.1016/j.jcjd.2018.01.014
  • Eyileten C, Zaremba M, Janicki PK, Rosiak M, Cudna A, Kapłon-Cieślicka A, Opolski G, Filipiak KJ, Kosior DA, Mirowska-Guzel D, et al. Serum brain-derived neurotrophic factor is related to platelet reactivity but not to genetic polymorphisms within BDNF encoding gene in patients with type 2 diabetes. Med. Sci. Monit. 2016;22:69–76. doi:10.12659/MSM.895607
  • Aslan G, Polat V, Bozcali E, Şahin MH, Çetin N, Ural D, et al. Evaluation of serum platelet-derived growth factor receptor-ß and brain-derived neurotrophic factor levels in microvascular angina. Anatol J Cardiol 2020;24:397–404. doi:10.14744/AnatolJCardiol.2020.44388
  • Tsai Y-F, Tseng L-M, Hsu C-Y, Yang M-H, Chiu J-H, Shyr Y-M, et al. Brain-derived neurotrophic factor (BDNF) -TrKB signaling modulates cancer-endothelial cells interaction and affects the outcomes of triple negative breast cancer. PLoS One 2017;12(6):e0178173. doi:10.1371/journal.pone.0178173
  • Eyileten C, Kaplon-Cieslicka A, Mirowska-Guzel D, Malek L, Postula M. Antidiabetic effect of brain-derived neurotrophic factor and its association with inflammation in type 2 diabetes mellitus. J Diabetes Res. 2017;2017:2823671. doi:10.1155/2017/2823671

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.