1,856
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The rapid change of shear rate gradient is beneficial to platelet activation

ORCID Icon, , , , , & show all
Article: 2288679 | Received 01 Dec 2022, Accepted 22 Nov 2023, Published online: 15 Dec 2023

References

  • Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res. 2007;100(12):1673–10. doi:10.1161/01.RES.0000267878.97021.ab.
  • Lui M, Gardiner EE, Arthur JF, Pinar I, Lee WM, Ryan K, Carberry J, Andrews RK. Novel stenotic microchannels to study thrombus formation in shear gradients: influence of shear forces and human platelet-related factors. IJMS. 2019;20(12): doi:10.3390/ijms20122967.
  • Wen L, Feil S, Wolters M, Thunemann M, Regler F, Schmidt K, Friebe A, Olbrich M, Langer H, Gawaz M, et al. A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis. Nat Commun. 2018;9(1):4301. doi:10.1038/s41467-018-06638-8.
  • Reininger AJ, Heijnen HF, Schumann H, Specht HM, Schramm W, Ruggeri ZM. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood. 2006;107(9):3537–45. doi:10.1182/blood-2005-02-0618.
  • Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP. A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nat Med. 2009;15(6):665–73. doi:10.1038/nm.1955.
  • Sheriff J, Bluestein D, Girdhar G, Jesty J. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann Biomed Eng. 2010;38(4):1442–50. doi:10.1007/s10439-010-9936-2.
  • Rahman SM, Eichinger CD, Hlady V. Effects of upstream shear forces on priming of platelets for downstream adhesion and activation. Acta Biomater. 2018;73:228–35. doi:10.1016/j.actbio.2018.04.002.
  • Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res. 2004;114(5–6):447–53. doi:10.1016/j.thromres.2004.07.020.
  • Sing CE, Alexander-Katz A. Elongational flow induces the unfolding of von Willebrand factor at physiological flow rates. Biophys J. 2010;98(9):L35–7. doi:10.1016/j.bpj.2010.01.032.
  • Ting LH, Feghhi S, Taparia N, Smith AO, Karchin A, Lim E, John AS, Wang X, Rue T, White NJ, et al. Contractile forces in platelet aggregates under microfluidic shear gradients reflect platelet inhibition and bleeding risk. Nat Commun. 2019;10(1):1204. doi:10.1038/s41467-019-09150-9.
  • Liu ZL, Bresette C, Aidun CK, Ku DN. SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear. Blood Adv. 2022;6(8):2453–65. doi:10.1182/bloodadvances.2021005692.
  • Zhao YC, Vatankhah P, Goh T, Michelis R, Kyanian K, Zhang Y, Li Z, Ju LA. Hemodynamic analysis for stenosis microfluidic model of thrombosis with refined computational fluid dynamics simulation. Sci Rep. 2021;11(1):6875. doi:10.1038/s41598-021-86310-2.
  • Fang J, Sun X, Liu S, Yang P, Lin J, Feng J, Cruz MA, Dong J-F, Fang Y, Wu J, et al. Shear stress accumulation enhances von Willebrand factor-induced platelet P-Selectin translocation in a PI3K/Akt pathway-dependent manner. Front Cell Dev Biol. 2021;9:642108. doi:10.3389/fcell.2021.642108.
  • Chen Z, Li T, Kareem K, Tran D, Griffith BP, Wu ZJ. The role of PI3K/Akt signaling pathway in non-physiological shear stress-induced platelet activation. Artif Organs. 2019;43(9):897–908. doi:10.1111/aor.13465.
  • He C, Yu L, Dan W, Deng S, Ma H, Liu B, Li Y. Application of a simple microfluidic chip analysis Technology to evaluate the inhibitory role of protocatechuic acid on shear-induced platelet aggregation. Evid Based Complement Alternat Med. 2021;2021:1–11. doi:10.1155/2021/5574413.
  • Zhang T, Liu L, Huang X, Gao X, Chen D, Huan X, He C, Li Y. Application of microfluidic chip technology to study the inhibitory effect of tetramethylpyrazine on platelet aggregation, activation, and phosphatidylserine exposure mediated by pathological high shear rate. Blood Coagul Fibrinolysis. 2022;34(1):47–60. doi:10.1097/MBC.0000000000001179.
  • Tovar-Lopez FJ, Rosengarten G, Westein E, Khoshmanesh K, Jackson SP, Mitchell A, Nesbitt WS. A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip. 2010;10(3):291–302. doi:10.1039/B916757A.
  • Bark DL Jr., Para AN, Ku DN. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol Bioeng. 2012;109(10):2642–50. doi:10.1002/bit.24537.
  • Zhang T, Huang X, Gao X, Liu L, Chen D, Huan X, He C, Li Y. Effect of pathological high shear exposure time on platelet activation and aggregation. Clin Hemorheol Microcirc. 2023;84(2):125–39. doi:10.3233/CH-221567.
  • Chen D, Daigh CA, Hendricksen JI, Pruthi RK, Nichols WL, Heit JA, Owen WG. A highly-sensitive plasma von Willebrand factor ristocetin cofactor (VWF: RCo) activity assay by flow cytometry. J Thromb Haemost. 2008;6(2):323–30. doi:10.1111/j.1538-7836.2008.02845.x.
  • Patti G, Di Martino G, Ricci F, Renda G, Gallina S, Hamrefors V, Melander O, Sutton R, Engström G, De Caterina R, et al. Platelet indices and risk of death and cardiovascular events: results from a large population-based cohort study. Thromb Haemost. 2019;119(11):1773–84. doi:10.1055/s-0039-1694969.
  • Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood. 2007;109(2):566–76. doi:10.1182/blood-2006-07-028282.
  • Jackson SP, Nesbitt WS, Westein E. Dynamics of platelet thrombus formation. J Thromb Haemost. 2009;7(Suppl 1):17–20. doi:10.1111/j.1538-7836.2009.03401.x.
  • Westein E, van der Meer AD, Kuijpers MJ, Frimat JP, van den Berg A, Heemskerk JW. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc Natl Acad Sci USA. 2013;110(4):1357–62. doi:10.1073/pnas.1209905110.
  • Ferroni P, Martini F, Riondino S, La Farina F, Magnapera A, Ciatti F, Guadagni F. Soluble P-selectin as a marker of in vivo platelet activation. Clinica Chimica Acta. 2009;399(1–2):88–91. doi:10.1016/j.cca.2008.09.018.
  • Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation. J Thromb Haemostasis. 2009;7(Suppl 1):206–9. doi:10.1111/j.1538-7836.2009.03370.x.
  • Rahman SM, Hlady V. Microfluidic assay of antiplatelet agents for inhibition of shear-induced platelet adhesion and activation. Lab Chip. 2021;21(1):174–83. doi:10.1039/D0LC00756K.
  • Hamburger SA, McEver RP. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood. 1990;75(3):550–4. doi:10.1182/blood.V75.3.550.550.
  • Ikeda Y, Handa M, Kawano K, Kamata T, Murata M, Araki Y, Anbo H, Kawai Y, Watanabe K, Itagaki I, et al. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest. 1991;87(4):1234–40. doi:10.1172/JCI115124.
  • Jackson SP, Yap CL, Anderson KE. Phosphoinositide 3-kinases and the regulation of platelet function. Biochem Soc Trans. 2004;32(Pt 2):387–92. doi:10.1042/bst0320387.
  • Woulfe DS. Akt signaling in platelets and thrombosis. Expert Rev Hematol. 2010;3(1):81–91. doi:10.1586/ehm.09.75.
  • Yap CL, Anderson KE, Hughan SC, Dopheide SM, Salem HH, Jackson SP. Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin αIIbβ3. Blood. 2002;99(1):151–8. doi:10.1182/blood.V99.1.151.