2,031
Views
7
CrossRef citations to date
0
Altmetric
Articles

Modeling development of natural multi-sensory integration using neural self-organisation and probabilistic population codes

, &
Pages 358-376 | Received 02 Apr 2014, Accepted 27 Sep 2014, Published online: 27 Oct 2014

References

  • Alais D., & Burr D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14(3), 257–262. doi: 10.1016/j.cub.2004.01.029
  • Anastasio T. J., Patton P., & Belkacem-Boussaid K. (2000). Using Bayes’ rule to model multisensory enhancement in the superior solliculus. Neural Computation, 12(5), 1165–1187. doi: 10.1162/089976600300015547
  • Barber M. J., Clark J. W., & Anderson C. H. (2003). Neural representation of probabilistic information. Neural Computation, 15(8), 1843–1864. doi: 10.1162/08997660360675062
  • Bauer J., Dávila-Chacón J., Strahl E., & Wermter S. (2012). Smoke and mirrors – Virtual realities for sensor fusion experiments in biomimetic robotics. The 2012 IEEE conference on multisensor fusion and integration for intelligent systems (MFI) (pp. 114–119). Hamburg: IEEE.
  • Bauer J., Weber C., & Wermter S. (2012). A SOM-based model for multi-sensory integration in the superior colliculus. The 2012 international joint conference on neural networks (IJCNN) (pp. 1–8). Brisbane: IEEE.
  • Bauer J., & Wermter S. (2013). Self-organized neural learning of statistical inference from high-dimensional data. In F. Rossi (Ed.), International joint conference on artificial intelligence (IJCAI) (pp. 1226–1232). Beijing: AAAI Press.
  • Beck J. M., Ma W. J., Kiani R., Hanks T., Churchland A. K., Roitman J., … Pouget A. (2008). Probabilistic population codes for Bayesian decision making. Neuron, 60(6), 1142–1152. doi: 10.1016/j.neuron.2008.09.021
  • Beira R., Lopes M., Praça M., Santos-Victor J., Bernardino A., Metta G., … Saltarén R. (2006). Design of the robot-cub (icub) head. The 2006 IEEE international conference on robotics and automation (ICRA 2006) (pp. 94–100). Orlando, FL: IEEE.
  • Bishop C. M., Svensén M., & Williams C. K. I. (1998). GTM: The generative topographic mapping. Neural Computation, 10(1), 215–234. doi: 10.1162/089976698300017953
  • Brooks R. A. (1992). Artificial life and real robots. In F. J. Varela & P. Bourgine (Eds.) Toward a practice of autonomous systems: Proceedings of the first European conference on artificial life (pp. 3–10). Cambridge, MA: MIT Press.
  • Burnham K. P., & Anderson D. R. (2002). Model selection and multimodal inference – A practical information-theoretic approach (2nd ed.). New York: Springer.
  • Carandini M., & Heeger D. J. (2011). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51–62.
  • Cuijpers R. H., & Erlhagen W. (2008). Implementing Bayes’ rule with neural fields. Proceedings of the 18th international conference on artificial neural networks, Part II (pp. 228–237). Berlin: Springer.
  • Cuppini C., Magosso E., Rowland B. A., Stein B. E., & Ursino M. (2012). Hebbian mechanisms help explain development of multisensory integration in the superior colliculus: A neural network model. Biological Cybernetics, 106(11–12), 691–713. doi: 10.1007/s00422-012-0511-9
  • Datteri E., & Tamburrini G. (2007). Biorobotic experiments for the discovery of biological mechanisms. Philosophy of Science, 74(3), 409–430. Retrieved from http://www.jstor.org/stable/10.1086/522095. doi: 10.1086/522095
  • Dávila-Chacón J., Heinrich S., Liu J., & Wermter S. (2012). Biomimetic binaural sound source localisation with ego-noise cancellation. In A. E. P. Villa, W. Duch, P. Érdi, F. Masulli, & G. Palm (Eds.), Artificial neural networks and machine learning ICANN 2012 (Vol. 7552, pp. 239–246). Berlin: Springer.
  • DeBello W. M., & Knudsen E. I. (2004). Multiple sites of adaptive plasticity in the owl's auditory localization pathway. The Journal of Neuroscience, 24(31), 6853–6861. doi: 10.1523/JNEUROSCI.0480-04.2004
  • DeSieno D. (1988). Adding a conscience to competitive learning. IEEE international conference on neural networks, 1988 (pp. 117–124). San Diego, CA: IEEE.
  • Edwards S. B., Ginsburgh C. L., Henkel C. K., & Stein B. E. (1979). Sources of subcortical projections to the superior colliculus in the cat. The Journal of Comparative Neurology, 184(2), 309–329. doi: 10.1002/cne.901840207
  • Ernst M. O., & Banks M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433. doi: 10.1038/415429a
  • Fetsch C. R., DeAngelis G. C., & Angelaki D. E. (2013). Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nature Reviews Neuroscience, 14(6), 429–442. doi: 10.1038/nrn3503
  • Frassinetti F., Bolognini N., & Làdavas E. (2002). Enhancement of visual perception by crossmodal visuo-auditory interaction. Experimental Brain Research, 147(3), 332–343. doi: 10.1007/s00221-002-1262-y
  • Georgopoulos A. P., Schwartz A. B., & Kettner R. E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419. doi: 10.1126/science.3749885
  • Gori M., Del Viva M., Sandini G., & Burr D. C. (2008). Young children do not integrate visual and haptic form information. Current Biology, 18(9), 694–698. doi: 10.1016/j.cub.2008.04.036
  • Gori M., Sandini G., & Burr D. (2012). Development of visuo-auditory integration in space and time. Frontiers in Integrative Neuroscience, 6. Retrieved from http://journal.frontiersin.org/Journal/10.3389/fnint.2012.00077/full. doi: 10.3389/fnint.2012.00077
  • Imai T., Sakano H., & Vosshall L. B. (2010). Topographic mapping – The olfactory system. Cold Spring Harbor Perspectives in Biology, 2(8), a001776. doi: 10.1101/cshperspect.a001776
  • Jack C. E., & Thurlow W. R. (1973). Effects of degree of visual association and angle of displacement on the ‘ventriloquism’ effect. Perceptual and Motor Skills, 37(3), 967–979. doi: 10.2466/pms.1973.37.3.967
  • Jazayeri M., & Movshon A. A. (2006). Optimal representation of sensory information by neural populations. Nature Neuroscience, 9(5), 690–696. doi: 10.1038/nn1691
  • Kaas J. H. (1997). Topographic maps are fundamental to sensory processing. Brain Research Bulletin, 44(2), 107–112. doi: 10.1016/S0361-9230(97)00094-4
  • King A. J. (2013). Multisensory circuits. Neural circuit development and function in the brain (pp. 61–73). Oxford: Academic Press.
  • Kohonen T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69. doi: 10.1007/BF00337288
  • Kohonen T. (2001). Self-organizing maps. Berlin: Springer.
  • Kohonen T. (2013). Essentials of the self-organizing map. Neural Networks, 37, 52–65. doi: 10.1016/j.neunet.2012.09.018
  • Landy M. S., Banks M. S., & Knill D. C. (2011). Ideal-observer models of cue integration. In J. Trommershäuser, K. Körding, & M. S. Landy (Eds.), Sensory cue integration (pp. 251–262). Oxford: Oxford University Press.
  • Marr D. (1983). Vision: A computational investigation into the human representation and processing of visual information. New York, NY: Henry Holt & Company.
  • May P. J. (2006). The mammalian superior colliculus: Laminar structure and connections. Progress in Brain Research, 151, 321–378. doi: 10.1016/S0079-6123(05)51011-2
  • Middlebrooks J. C., & Green D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42(1), 135–159. doi: 10.1146/annurev.ps.42.020191.001031
  • Neil P. A., Chee-Ruiter C., Scheier C., Lewkowicz D. J., & Shimojo S. (2006). Development of multisensory spatial integration and perception in humans. Developmental Science, 9(5), 454–464. doi: 10.1111/j.1467-7687.2006.00512.x
  • Ohshiro T., Angelaki D. E., & DeAngelis G. C. (2011). A normalization model of multisensory integration. Nature Neuroscience, 14(6), 775–782. doi: 10.1038/nn.2815
  • Pouget A., Dayan P., & Zemel R. S. (2003). Inference and computation with population codes. Annual Review of Neuroscience, 26(1), 381–410. doi: 10.1146/annurev.neuro.26.041002.131112
  • Ritter H. (1999). Self-organizing maps on non-Euclidean spaces. Kohonen maps (pp. 97–108).
  • Rucci M., Tononi G., & Edelman G. M. (1997). Registration of neural maps through value-dependent learning: Modeling the alignment of auditory and visual maps in the barn owl's optic tectum. Journal of Neuroscience, 17(1), 334–352. Retrieved from http://www.jneurosci.org/cgi/content/abstract/17/1/334.
  • Schnupp J., Nelken I., & King A. J. (2011). Auditory neuroscience: Making sense of sound. Cambridge, MA: MIT Press.
  • Seung H. S., & Sompolinsky H. (1993). Simple models for reading neuronal population codes. Proceedings of the National Academy of Sciences, 90(22), 10749–10753. doi: 10.1073/pnas.90.22.10749
  • Slaney M. (1993). An efficient implementation of the Patterson–Holdsworth auditory filter bank (Tech. Rep.). Apple Computer, Perception Group.
  • Soltani A., & Wang X.-J. (2010). Synaptic computation underlying probabilistic inference. Nature Neuroscience, 13(1), 112–119. doi: 10.1038/nn.2450
  • Stein B. E. (2012). Early experience affects the development of multisensory integration in single neurons of the superior colliculus. In B. E. Stein (Ed.), The new handbook of multisensory processing (pp. 589–606). Cambridge, MA: MIT Press.
  • Stein B. E., & Meredith M. A. (1993). The merging of the senses (1st ed.). Cambridge, MA: MIT Press.
  • Stein B. E., & Stanford T. R. (2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(5), 406. doi: 10.1038/nrn2377
  • Stone J. V. (2012). Vision and brain: How we perceive the world (1 ed.). Cambridge, MA: MIT Press.
  • Tolhurst D. J., Movshon J. A., & Dean A. F. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research, 23(8), 775–785. doi: 10.1016/0042-6989(83)90200-6
  • Ungemach C., Chater N., & Stewart N. (2009). Are probabilities overweighted or underweighted when rare outcomes are experienced (rarely)? Psychological Science, 20(4), 473–479. doi: 10.1111/j.1467-9280.2009.02319.x
  • Vogels R., Spileers W., & Orban G. A. (1989). The response variability of striate cortical neurons in the behaving monkey. Experimental Brain Research, 77(2), 432–436. doi: 10.1007/BF00275002
  • Wang L., Sarnaik R., Rangarajan K., Liu X., & Cang J. (2010). Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. Journal of Neuroscience, 30(49), 16573–16584. doi: 10.1523/JNEUROSCI.3305-10.2010
  • Weisswange T. H., Rothkopf C. A., Rodemann T., & Triesch J. (2011). Bayesian cue integration as a developmental outcome of reward mediated learning. PLoS ONE, 6(7), e21575+. doi: 10.1371/journal.pone.0021575
  • Xu J., Yu L., Rowland B. A., Stanford T. R., & Stein B. E. (2012). Incorporating cross-modal statistics in the development and maintenance of multisensory integration. Journal of Neuroscience, 32(7), 2287–2298. doi: 10.1523/JNEUROSCI.4304-11.2012
  • Yang T., & Shadlen M. N. (2007). Probabilistic reasoning by neurons. Nature, 447(7148), 1075–1080. doi: 10.1038/nature05852
  • Yates G. K., Johnstone B. M., Patuzzi R. B., & Robertson D. (1992). Mechanical preprocessing in the mammalian cochlea. Trends in Neurosciences, 15(2), 57–61. doi: 10.1016/0166-2236(92)90027-6
  • Yin H. (2007). Learning nonlinear principal manifolds by self-organising maps. In A. N. Gorban, B. Kégl, D. C. Scrunch, & A. Y. Zinovyev (Eds.), Principal manifolds for data visualization and dimension reduction (pp. 68–95). Berlin: Springer.
  • Zhou T., Dudek P., & Shi B. E. (2011). Self-organizing neural population coding for improving robotic visuomotor coordination. The 2011 international joint conference on neural networks (IJCNN) (pp. 1437–1444). San Jose, CA: IEEE.