14,938
Views
29
CrossRef citations to date
0
Altmetric
Articles

Applications of federated learning in smart cities: recent advances, taxonomy, and open challenges

, , , , &
Pages 1-28 | Received 18 Dec 2020, Accepted 22 May 2021, Published online: 04 Jun 2021

References

  • Acar, A., Aksu, H., Uluagac, A. S., & Conti, M. (2018). A survey on homomorphic encryption schemes: Theory and implementation. ACM Computing Surveys (CSUR), 51(4), 1–35. https://doi.org/10.1145/3214303
  • Ahamad, S. S., & Khan Pathan, A. S. (2020). A formally verified authentication protocol in secure framework for mobile healthcare during COVID-19-like pandemic. Connection Science, 32(4), 1–23. https://doi.org/10.1080/09540091.2020.1854180
  • Amiri, M. M., & Gündüz, D. (2020a). Federated learning over wireless fading channels. IEEE Transactions on Wireless Communications, 19(5), 3546–3557. https://doi.org/10.1109/TWC.7693
  • Amiri, M. M., & Gündüz, D. (2020b). Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air. IEEE Transactions on Signal Processing, 68(3), 2155–2169. https://doi.org/10.1109/TSP.78.
  • Ashraf, M. I., Liu, C. F., Bennis, M., & Saad, W. (2017). Towards low-latency and ultra-reliable vehicle-to-vehicle communication. 2017 European Conference on Networks and Communications (EuCNC), Oulu, Finland, 12-15 June 2017.
  • Aussel, N., Chabridon, S., & Petetin, Y. (2020). Combining federated and active learning for communication-efficient distributed failure prediction in aeronautics. Preprint, arXiv:2001.07504.
  • Awan, S., Li, F., Luo, B., & Liu, M. (2019). A reliable and accountable privacy-preserving federated learning framework using the blockchain. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security.November 2019.
  • Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C., Konečn, J., Mazzocchi, S., McMahan, H. B., T. Van Overveldt, Petrou, D., Ramage, D., & Roselander, J. (2019). Towards federated learning at scale: System design. Preprint, arXiv:1902.01046.
  • Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage, D., Segal, A., & Seth, K. (2017). Practical secure aggregation for privacy-preserving machine learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.October 2017.
  • Brik, B., Ksentini, A., & Bouaziz, M. (2020). Federated learning for UAVs-enabled wireless networks: Use cases, challenges, and open problems. IEEE Access, 8(3), 53841–53849. https://doi.org/10.1109/Access.6287639.
  • Chamikara, M. A. P., Bertok, P., Khalil, I., Liu, D., & Camtepe, S. (2020). Privacy preserving distributed machine learning with federated learning. Preprint, arXiv:2004.12108.
  • Chen, F., Dong, Z., Li, Z., & He, X. (2018). Federated meta-learning for recommendation. Preprint, arxiv:1802.07876.
  • Chen, S., Xue, D., Chuai, G., Yang, Q., & Liu, Q. (2020). FL-QSAR: A federated learning based QSAR prototype for collaborative drug discovery. BioRxiv.
  • Dayarathna, M., Fremantle, P., Perera, S., & Suhothayan, S. (2017). Role of real-time big data processing in the internet of things. In Big data management and processing (pp. 239–262). Chapman and Hall/CRC.
  • Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K., & Ng, A. Y. (2012). Large scale distributed deep networks. Part of Advances in Neural Information Processing Systems 25 (NIPS 2012), Harrahs and Harveys, Lake Tahoe , Mon Dec 3rd through Sat the 8th.
  • De Rosa, R., & Cesa-Bianchi, N. (2017). Confidence decision trees via online and active learning for streaming data. Journal of Artificial Intelligence Research, 60(12), 1031–1055. https://doi.org/10.1613/jair.5440.
  • Duan, S., Zhang, D., Wang, Y., Li, L., & Zhang, Y. (2019). Jointrec: A deep learning-based joint cloud video recommendation framework for mobile IoTs. IEEE Internet of Things, 7(3), 1655–1666. https://doi.org/10.1109/JIOT.2019.2944889
  • Feng, Y., Yang, X., Fang, W., Xia, S. T., & Tang, X. (2020). Practical and bilateral privacy-preserving federated learning. Preprint, arXiv:2002.09843.
  • Ge, S., Wu, F., Wu, C., Qi, T., Huang, Y., & Xie, X. (2020). Fedner: Medical named entity recognition with federated learning. Preprint, arXiv:2003.09288.
  • Geyer, R. C., Klein, T., & Nabi, M. (2017). Differentially private federated learning: A client level perspective. Preprint, arXiv:1712.07557.
  • Giacomelli, I., Jha, S., Joye, M., Page, C. D., & Yoon, K. (2018). Privacy-preserving ridge regression with only linearly-homomorphic encryption. International Conference on Applied Cryptography and Network Security, Preneel B., Vercauteren F, 10 June 2018.
  • Gu, B., Xu, A., Huo, Z., Deng, C., & Huang, H. (2020). Privacy-preserving asynchronous federated learning algorithms for multi-party vertically collaborative learning. Preprint, arXiv:2008.06233.
  • Guan, Z., Si, G., Zhang, X., Wu, L., Guizani, N., Du, X., & Ma, Y. (2018). Privacy-preserving and efficient aggregation based on blockchain for power grid communications in smart communities. IEEE Communications Magazine, 56(7), 82–88. https://doi.org/10.1109/MCOM.2018.1700401
  • Han, G., Zhang, T., Zhang, Y., Xu, G., Sun, J., & Cao, J. (2021). Verifiable and privacy preserving federated learning without fully trusted centers. Journal of Ambient Intelligence and Humanized Computing, 12(1), 1–11. https://doi.org/10.1007/s12652-020-02664-x
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27-30 June 2016.
  • Huang, Y. (2020). Preservation of patient level privacy: Federated classification and calibration models [Unpublished doctoral dissertation, UC San Diego].
  • Ji, S., Pan, S., Long, G., Li, X., Jiang, J., & Huang, Z. (2019). Learning private neural language modeling with attentive aggregation. 2019 international joint conference on neural networks (IJCNN) , Budapest, Hungary, 14-19 July 2019.
  • Jiang, J., Hu, L., Hu, C., Liu, J., & Wang, Z. (2020). BACombo-bandwidth-aware decentralized federated learning. Electronics, 9(3), 440. https://doi.org/10.3390/electronics9030440
  • Khan, L. U., Saad, W., Han, Z., Hossain, E., & Hong, C. (2020). Federated learning for internet of things: Recent advances, taxonomy, and open challenges. arXiv:abs/2009.13012.
  • Khan, L. U., Tran, N. H., Pandey, S. R., Saad, W., Han, Z., Nguyen, M. N., & C. S. Hong (2019). Federated learning for edge networks: Resource optimization and incentive mechanism. Preprint, arXiv:1911.05642.
  • Kilbertus, N., Gascón, A., Kusner, M. J., Veale, M., Gummadi, K. P., & Weller, A. (2018). Blind justice: Fairness with encrypted sensitive attributes. Preprint, arXiv:1806.03281.
  • Kim, H., Park, J., Bennis, M., & Kim, S. L. (2019). Blockchained on-device federated learning. IEEE Communications Letters, 24(6), 1279–1283. https://doi.org/10.1109/COML.4234
  • Konečn, J., McMahan, H. B., Ramage, D., & Richtárik, P. (2016). Federated optimization: Distributed machine learning for on-device intelligence. Preprint, arXiv:1610.02527.
  • Lee, G. H., & Shin, S. Y. (2020). Federated learning on clinical benchmark data: Performance assessment. Journal of Medical Internet Research, 22(10), Article ID: e20891. https://doi.org/10.2196/20891
  • Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.79
  • Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2018). Federated optimization in heterogeneous networks. Preprint, arXiv:1812.06127.
  • Li, T., Zhao, M., & Wong, K. K. L. (2020). Machine learning based code dissemination by selection of reliability mobile vehicles in 5G networks. Computer Communications, 152(2), 109–118. https://doi.org/10.1016/j.comcom.2020.01.034.
  • Liang, Y., Guo, Y., Gong, Y., Luo, C., Zhan, J., & Huang, Y. (2020). An isolated data Island benchmark suite for federated learning. Preprint, arXiv:2008.07257.
  • Lim, W. Y. B., Huang, J., Xiong, Z., Kang, J., Niyato, D., Hua, X. S., Leung, C., & Miao, C. (2020). Towards federated learning in UAV-enabled internet of vehicles: A multi-dimensional contract-matching approach. Preprint, arXiv:2004.03877.
  • Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y. C., Yang, Q., Niyato, D., & Miao, C. (2020). Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3), 2031–2063. https://doi.org/10.1109/COMST.2020.2986024
  • Liu, Y., Huang, A., Luo, Y., Huang, H., Liu, Y., Chen, Y., Feng, L., Chen, T., Yu, H., & Yang, Q. (2020). FedVision: An online visual object detection platform powered by federated learning. Proceedings of the AAAI Conference on Artificial Intelligence, New York Hilton Midtown, New York, USA, February 7–12, 2020.
  • Liu, Y., Huang, A., Luo, Y., Huang, H., & Yang, Q. (2020). FedVision: An online visual object detection platform powered by federated learning.
  • Liu, B., Wang, L., & Liu, M. (2019). Lifelong federated reinforcement learning: A learning architecture for navigation in cloud robotic systems. IEEE Robotics and Automation Letters, 4(4), 4555–4562. https://doi.org/10.1109/LSP.2016.
  • Liu, B., Wang, L., Liu, M., & Xu, C. Z. (2019). Federated imitation learning: A novel framework for cloud robotic systems with heterogeneous sensor data. IEEE Robotics and Automation Letters, 5(2), 3509–3516. https://doi.org/10.1109/LSP.2016.
  • Liu, B., Yan, B., Zhou, Y., Wang, J., Liu, L., Zhang, Y., & Nie, X. (2020). A real-time contribution measurement method for participants in federated learning. Preprint, arXiv:2009.03510.
  • Liu, B., Yan, B., Zhou, Y., Yang, Y., & Zhang, Y. (2020). Experiments of federated learning for COVID-19 chest x-ray images. Preprint, arXiv:2007.05592.
  • Liu, Y., Zhang, X., & Wang, L. (2020). Asymmetrically vertical federated learning. Preprint, arXiv:2004.07427.
  • Long, G., Tan, Y., Jiang, J., & Zhang, C. (2020). Federated learning for open banking. In Federated learning (pp. 240–254). Springer.
  • Lu, Y., Huang, X., Dai, Y., Maharjan, S., & Zhang, Y. (2019). Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Transactions on Industrial Informatics, 16(6), 4177–4186. https://doi.org/10.1109/TII.9424
  • Luping, W., Wei, W., & Bo, L. (2019). Cmfl: Mitigating communication overhead for federated learning. 2019 IEEE 39th international conference on distributed computing systems (ICDCS) (pp. 954–964), Dallas, TX, USA, 7-10 July 2019.
  • Lv, Z., Hu, B., & Lv, H. (2019). Infrastructure monitoring and operation for smart cities based on IoT system. IEEE Transactions on Industrial Informatics, 16(3), 1957–1962. https://doi.org/10.1109/TII.9424
  • Lyu, L., Yu, H., & Yang, Q. (2020). Threats to federated learning: A survey (Vol. 1). Springer International Publishing.
  • Ma, X., Ji, C., Zhang, X., Wang, J., Li, J., Li, K. C., & Chen, X. (2020). Secure multiparty learning from the aggregation of locally trained models. Journal of Network and Computer Applications, 167(10), 102754–102764. https://doi.org/10.1016/j.jnca.2020.102754
  • Ma, C., Li, J., Ding, M., Yang, H. H., Shu, F., Quek, T. Q., & Poor, H. V. (2020). On safeguarding privacy and security in the framework of federated learning. IEEE Network, 34(4), 242–248. https://doi.org/10.1109/MNET.001.1900506
  • Mahmud, R., Kotagiri, R., Buyya, R., Di Martino, B., Li, K., Yang, L., & Esposito, A. (2018). Internet of Things (Technology, Communications and Computing) (Vol. 103, pp. 1–12). Springer
  • Malekzadeh, M., Hasircioglu, B., Mital, N., Katarya, K., Ozfatura, M. E., & Gündüz, D. (2021). Dopamine: Differentially private secure federated learning on medical data. Preprint, arXiv:2101.11693.
  • Mcmahan, H. B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A.y (2016). Communication-efficient learning of deep networks from decentralized data.
  • Mcmahan, H. B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A.y.. (2017). Communication-efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017 (pp. 1273–1282), Fort Lauderdale, FL, USA, 20-22 April 2017.
  • McMahan, H. B., Ramage, D., Talwar, K., & Zhang, L. (2017). Learning differentially private language models without losing accuracy. Preprint, arXiv:1710.06963.
  • Melis, L., Song, C., De Cristofaro, E., & Shmatikov, V. (2019). Exploiting unintended feature leakage in collaborative learning. : 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19-23 May 2019.
  •  Moriai, Shiho. (2019). Privacy-preserving deep learning via additively homomorphic encryption. 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), Kyoto, Japan, 10-12 June 2019.
  • Ng, J. S., Lim, W. Y. B., Dai, H. N., Xiong, Z., Huang, J., Niyato, D., Hua, X.-S., Leung, C., & Miao, C. (2020). Joint auction-coalition formation framework for communication-efficient federated learning in UAV-enabled internet of vehicles. Preprint, arXiv:2007.06378.
  • Niknam, S., Dhillon, H. S., & Reed, J. H. (2020). Federated learning for wireless communications: Motivation, opportunities, and challenges. IEEE Communications Magazine, 58(6), 46–51. https://doi.org/10.1109/MCOM.35
  • Peng, X., Huang, Z., Zhu, Y., & Saenko, K. (2019). Federated adversarial domain adaptation. Preprint, arXiv:1911.02054.
  • Pokhrel, S. R., & Choi, J. (2020a). Federated learning with blockchain for autonomous vehicles: Analysis and design challenges. IEEE Transactions on Communications, 68(8), 4734–4746. https://doi.org/10.1109/TCOMM.26
  • Pokhrel, S. R., & Choi, J. (2020b). Improving TCP performance over WiFi for internet of vehicles: A federated learning approach. IEEE Transactions on Vehicular Technology, 69(6), 6798–6802. https://doi.org/10.1109/TVT.2020.2984369
  • Qiu, J., Du, L., Zhang, D., Su, S., & Tian, Z. (2019). Nei-TTE: Intelligent traffic time estimation based on fine-grained time derivation of road segments for smart city. IEEE Transactions on Industrial Informatics, 16(4), 2659–2666. https://doi.org/10.1109/TII.9424
  • Rahman, M. A., Rashid, M. M., Hossain, M. S., Hassanain, E., Alhamid, M. F., & Guizani, M. (2019). Blockchain and IoT-based cognitive edge framework for sharing economy services in a smart city. IEEE Access, 7(1), 18611–18621. https://doi.org/10.1109/ACCESS.2019.2896065.
  • Rajendran, S., Obeid, J. S., Binol, H., DAgostino Jr, R., Foley, K., Zhang, W., Austin, P., Brakefield, J., Gurcan, M. N., & Topaloglu, U. (2021). Cloud-based federated learning implementation across medical centers. JCO Clinical Cancer Informatics, 5(1), 1–11. https://doi.org/10.1200/CCI.20.00060.
  • Rath, M., & Pattanayak, B. (2019). Technological improvement in modern health care applications using internet of things (IoT) and proposal of novel health care approach. International Journal of Human Rights in Healthcare, 12(2), 148–162. https://doi.org/10.1108/IJHRH-01-2018-0007
  • Rizzi, M., D'Aloia, M., & Longo, A. (2020). Digital watermarking for healthcare: A survey of ECG watermarking methods in telemedicine. International Journal of Computational Science and Engineering, 23(3), 235–249. https://doi.org/10.1504/IJCSE.2020.111432
  • Samarakoon, S., Bennis, M., Saad, W., & Debbah, M. (2018). Federated learning for ultra-reliable low-latency V2V communications. 2018 IEEE global communications conference (GLOBECOM) (pp. 1–7), Abu Dhabi, United Arab Emirates, December 9-13, 2018.
  • Samarakoon, S., Bennis, M., Saad, W., & Debbah, M. (2019). Distributed federated learning for ultra-reliable low-latency vehicular communications. IEEE Transactions on Communications, 68(2), 1146–1159. https://doi.org/10.1109/TCOMM.26
  • Saputra, Y. M., Nguyen, D. N., Hoang, D. T., Vu, T. X., Dutkiewicz, E., & Chatzinotas, S. (2020). Federated learning meets contract theory: Energy-efficient framework for electric vehicle networks. Preprint, arXiv:2004.01828.
  • Śmietanka, M., Koshiyama, A., & Treleaven, P. (2020). Algorithms in future insurance markets. Available at SSRN 3641518.
  • Smith, V., Chiang, C. K., Sanjabi, M., & Talwalkar, A. S. (2017).  Federated multi-task learning. Advances in Neural Information Processing Systems 30 (NIPS 2017)(pp. 4424–4434), Long Beach, CA, USA, December 4-9, 2017.
  • Smith, V., Forte, S., Ma, C., Takáč, M., Jordan, M. I., & Jaggi, M. (2017). CoCoA: A general framework for communication-efficient distributed optimization. The Journal of Machine Learning Research, 18(1), 8590–8638.
  • Sui, D., Chen, Y., Zhao, J., Jia, Y., Xie, Y., & Sun, W. (2020). Federated learning via ensemble distillation for medical relation extraction. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 2118–2128), Online, November 16-20, 2020.
  • Suresh, A. T., Felix, X. Y., Kumar, S., & McMahan, H. B. (2017). Distributed mean estimation with limited communication. International conference on machine learning (pp. 3329–3337), Sydney, NSW, Australia, 6-11 August 2017.
  • Suzumura, T., Zhou, Y., Barcardo, N., Ye, G., Houck, K., Kawahara, R., Anwar, A., L. L. Stavarache, Klyashtorny, D., Ludwig, H., & Bhaskaran, K. (2019). Towards federated graph learning for collaborative financial crimes detection. Preprint, arXiv:1909.12946.
  • Tang, S., Zhou, W., Chen, L., Lai, L., Xia, J., & Fan, L. (2021). Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks. Preprint, arXiv:2101.12472.
  • Vaid, A., Jaladanki, S. K., Xu, J., Teng, S., Kumar, A., Lee, S., Somani, S., Paranjpe, I., De Freitas, J. K., Wanyan, T., Johnson, K. W., Bicak, M., Klang, E., Kwon, Y. J., Costa, A., Zhao, S., Miotto, R., Charney, A. W., Böttinger, E., …Glicksberg, B. S. (2021). Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: Machine learning approach. JMIR Medical Informatics, 9(1), Article ID: e24207. https://doi.org/10.2196/24207
  • Valêncio, C., Jos, N. A., Eacute, N. A., Freitas, C. D., & Tenório, W. (2020). Analysing research collaboration through co-authorship networks in a big data environment: An efficient parallel approach. International Journal of Computational Science and Engineering, 21(3), 364–374. https://doi.org/10.1504/IJCSE.2019.10020390
  • Vepakomma, P., Gupta, O., Dubey, A., & Raskar, R. (2019). Reducing leakage in distributed deep learning for sensitive health data. Preprint, arXiv:1812.00564.
  • Wang, G., Dang, C. X., & Zhou, Z. (2019). Measure contribution of participants in federated learning. 2019 IEEE International Conference on Big Data (Big Data) (pp. 2597–2604), Los Angeles, CA, USA, 9-12 Dec. 2019.
  • Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., & Chen, M. (2019). In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Network, 33(5), 156–165. https://doi.org/10.1109/MNET.65
  • Wang, Y., Wang, Y., & Wang, J. (2020). Efficient self-adaptive access control for personal medical data in emergency setting. International Journal of Computational Science and Engineering, 23(4), 341–351. https://doi.org/10.1504/IJCSE.2020.113180
  • Wang, X., Zheng, X., & Liang, X. (2021). Charging station recommendation for electric vehicle based on federated learning. Journal of Physics: Conference Series, 1792(2), 012055–012062. https://doi.org/10.1088/1742-6596/1792/1/012055
  • Wu, Q., He, K., & Chen, X. (2020). Personalized federated learning for intelligent iot applications: A cloud-edge based framework. IEEE Computer Graphics and Applications, 1(5), 35–44. https://doi.org/10.1109/OJCS.2020.2993259
  • Xiao, L., Xie, S., Han, D., Liang, W., Guo, J., & Chou, W. K. (2021). A lightweight authentication scheme for telecare medical information system. Connection Science, 33(1), 1–17. https://doi.org/10.1080/09540091.2021.1889976.
  • Xiong, Z., Cheng, Z., Liu, X., Wang, D., Luo, X., Zheng, M., & Jiang, H. (2020). Facing small and biased data dilemma in drug discovery with federated learning. BioRxiv.
  • Xu, Z., Liang, W., Li, K. C., Xu, J., & Jin, H. (2020). A blockchain-based roadside unit-assisted authentication and key agreement protocol for internet of vehicles. Journal of Parallel and Distributed Computing, 149(3), 29–39. https://doi.org/10.1016/j.jpdc.2020.11.003
  • Yan, J., Liu, J., & Tseng, F. M. (2020). An evaluation system based on the self-organizing system framework of smart cities: A case study of smart transportation systems in China. Technological Forecasting and Social Change, 153(4https://doi.org/10.1016/j.techfore.2018.07.009.
  • Yan, Z., Wicaksana, J., Wang, Z., Yang, X., & Cheng, K. T. (2020). Variation-aware federated learning with multi-source decentralized medical image data. IEEE Journal of Biomedical and Health Informatics, 24(11), 1–1. https://doi.org/10.1109/JBHI.2020.3040015
  • Yang, K., Jiang, T., Shi, Y., & Ding, Z. (2020). Federated learning via over-the-air computation. IEEE Transactions on Wireless Communications, 19(3), 2022–2035. https://doi.org/10.1109/TWC.7693
  • Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 1–19. https://doi.org/10.1145/3298981
  • Yang, W., Zhang, Y., Ye, K., Li, L., & Xu, C. Z. (2019). FFD: A federated learning based method for credit card fraud detection. International conference on big data (pp. 18–32), San Diego, CA, USA, June 25-30, 2019.
  • Yu, P., Wynter, L., & Lim, S. H. (2020). Fed+: A family of fusion algorithms for federated learning. Preprint, arXiv:2009.06303.
  • Zeng, T., Semiari, O., Chen, M., Saad, W., & Bennis, M. (2021). Federated learning on the road: Autonomous controller design for connected and autonomous vehicles. Preprint, arXiv:2102.03401.
  • Zhang, J., Cheng, Z., Cheng, X., & Chen, B. (2020). OAC-HAS: Outsourced access control with hidden access structures in fog-enhanced IoT systems. Connection Science, 32(4), 1–17. https://doi.org/10.1080/09540091.2020.1841096.
  • Zhang, W., Zhou, T., Lu, Q., Wang, X., Zhu, C., Wang, Z., & Wang, F. (2020). Dynamic fusion based federated learning for COVID-19 detection. Preprint, arXiv:2009.10401.
  • Zhao, Z., Feng, C., Yang, H. H., & Luo, X. (2020). Federated-learning-enabled intelligent fog radio access networks: Fundamental theory, key techniques, and future trends. IEEE Wireless Communications, 27(2), 22–28. https://doi.org/10.1109/MWC.7742
  • Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., & Chandra, V. (2018). Federated learning with non-iid data. Preprint, arXiv:1806.00582.
  • Zheng, L., Zhou, J., Chen, C., Wu, B., Wang, L., & Zhang, B. (2021). ASFGNN: Automated separated-federated graph neural network. Peer-to-Peer Networking and Applications, 14(3), 1–13. https://doi.org/10.1007/s12083-021-01074-w
  • Zhou, L., Wu, D., Chen, J., & Dong, Z. (2017). Greening the smart cities: Energy-efficient massive content delivery via D2D communications. IEEE Transactions on Industrial Informatics, 14(4), 1626–1634. https://doi.org/10.1109/TII.9424