2,621
Views
2
CrossRef citations to date
0
Altmetric
Articles

State-of-charge estimation for Lithium-Ion batteries using Kalman filters based on fractional-order models

, , &
Pages 162-184 | Received 18 Jun 2021, Accepted 06 Sep 2021, Published online: 24 Sep 2021

References

  • Abdullah, S., Nseef, S. K., & Turky, A. (2018). An interleaved artificial Bee colony algorithm for dynamic optimisation problems. Connection Science, 30(3), 272–284. https://doi.org/10.1080/09540091.2017.1379949
  • Ali, M. U., Zafar, A., Nengroo, S. H., Hussain, S., Alvi, M. J., & Kim, H. J. (2019). Towards a smarter battery management system for electric vehicle applications: A critical review of Lithium-Ion battery state of charge estimation. Energies, 12(1), 446–478. https://doi.org/10.3390/en12030446
  • Bertrand, N., Sabatier, J., Briat, O., & Vinassa, J. M. (2010). Embedded fractional nonlinear supercapacitor model and its parametric estimation method. IEEE Transactions on Industrial Electronics, 57(12), 3991–4000. https://doi.org/10.1109/TIE.2010.2076307
  • Brand, J., Zhang, Z. M., & Agarwal, R. K. (2014). Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm. Journal of Power Sources, 247(2), 729–737. https://doi.org/10.1016/j.jpowsour.2013.09.011
  • Bu, C. Y., Li, F. J., Yin, K., Pang, J. B., Wang, L. C., & Wang, K. (2020). Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Applied Electronic Materials, 2(4), 863–878. https://doi.org/10.1021/acsaelm.0c00022
  • Cai, M., Chen, W. J., & Tan, X. J. (2017). Battery state-of-charge estimation based on a dual unscented Kalman filter and fractional variable-order model. Energies, 10(10), 1577. https://doi.org/10.3390/en10101577
  • Chang, J. Q., Chi, M. S., & Shen, T. (2020). Model based state-of-energy estimation for LiFePO4 batteries using unscented particle filter. Journal of Power Electronics, 20(3), 624–633. https://doi.org/10.1007/s43236-020-00051-5
  • Chen, Y. X., Huang, D. Q., Zhu, Q., Liu, W. Q., Liu, C. Z., & Xiong, N. (2017). A new state of charge estimation algorithm for Lithium-Ion batteries based on the fractional unscented Kalman filter. Energies, 10(9), 1313. https://doi.org/10.3390/en10091313
  • Cheng, B., Zhou, Y. L., Zhang, J. X., Wang, J. P., & Cao, B. G. (2009). Ni-MH batteries state-ofcharge prediction based on immune evolutionary network. Energy Conversion and Management, 50(12), 3078–3086. https://doi.org/10.1016/j.enconman.2009.08.010
  • Dees, D. W., Battaglia, V. S., & Bélanger, A. (2002). Electrochemical modeling of lithium polymer batteries. Journal of Power Sources, 110(2), 310–320. https://doi.org/10.1016/S0378-7753(02)00193-3
  • Dickson, N. T. H., Hannan, M. A., Lipu, M. S. H., & Ker, P. J. (2019). State of charge estimation for Lithium-Ion batteries using model-based and data-driven methods: A review. IEEE Access, 7(9), 136116–136136. https://doi.org/10.1109/ACCESS.2019.2942213
  • Du, Z. X., Han, D. Z., & Li, K. C. (2019). Improving the performance of feature selection and data clustering with novel global search and elite-guided artificial bee colony algorithm. The Journal of Supercomputing, 75(8), 5189–5226. https://doi.org/10.1007/s11227-019-02786-w
  • Falahiazar, L., & Shah-Hosseini, H. (2018). Optimisation of engineering system using a novel search algorithm: The spacing multi-objective genetic algorithm. Connection Science, 30(3), 326–342. https://doi.org/10.1080/09540091.2018.1443319
  • Hametner, C., & Jakubek, S. (2013). State of charge estimation for Lithium Ion cells: Design of experiments, nonlinear identification and fuzzy observer design. Journal of Power Sources, 238(9), 413–421. https://doi.org/10.1016/j.jpowsour.2013.04.040
  • Hidalgo-Reyes, J. I., Gómez-Aguilar, J. F., Alvarado-Martínez, V. M., López-López, M. G., & Escobar-Jiméneza, R. F. (2020). Battery state-of-charge estimation using fractional extended Kalman filter with mittag-leffler memory. Alexandria Engineering Journal, 59(4), 1919–1929. https://doi.org/10.1016/j.aej.2019.12.006
  • Hu, X. S., Li, S. B., & Peng, H. E. (2012). A comparative study of equivalent circuit models for Li-ion batteries. Journal of Power Sources, 198(1), 359–367. https://doi.org/10.1016/j.jpowsour.2011.10.013
  • Hussein, A. A. H., & Batarseh, I. (2011). An overview of generic battery models. In Proc. IEEE PES, 24–29. https://doi.org/10.1109/TSG.2013.2277411
  • Jesus, I. S., & Machado, J. A. T. (2009). Development of fractional order capacitors based on electrolyte processes. Nonlinear Dynamics, 56(6), 45–55. https://doi.org/10.1007/s11071-008-9377-8
  • Jiang, Y., Liang, W., Tang, J., Zhou, H., Li, K., & Gaudiot, J.-L. (2021). A novel data representation framework based on nonnegative manifold regularisation. Connection Science, 33(2), 136–152. https://doi.org/10.1080/09540091.2020.1772722
  • Jiao, J., Wang, L., Li, Y., Han, D., Yao, M., Li, K., & Jiang, H. (2021). CASH: Correlation-aware scheduling to mitigate soft error impact on heterogeneous multicores. Connection Science, 33(2), 113–135. https://doi.org/10.1080/09540091.2020.1758924
  • Kang, L. W., Zhao, X., & Ma, J. (2014). A new neural network model for the state-of-charge estimation in the battery degradation process. Applied Energy, 121(2), 20–27. https://doi.org/10.1016/j.apenergy.2014.01.066
  • Kashkooli, A. G., Fathiannasab, H., Mao, Z. Y., & Chen, Z. W. (2019). Application of artificial intelligence to state-of-charge and state-of-health estimation of calendar-aged Lithium-Ion pouch cells. Journal of The Electrochemical Society, 166(4), A605–A615. https://doi.org/10.1149/2.0411904jes
  • Kheyrinataj, F., & Nazemi, A. (2020). Fractional power series neural network for solving delay fractional optimal control problems. Connection Science, 32(1), 53–80. https://doi.org/10.1080/09540091.2019.1605498
  • Kim, D., Goh, T., Park, M., & Kim, S. W. (2015).Fuzzy sliding mode observer with grey prediction for the estimation of the state-of-charge of a Lithium-Ion battery. Energies, 8(11), 12409–12428. https://doi.org/10.3390/en81112327
  • Klass, V., Behm, M., & Lindbergh, G. (2015). Capturing Lithium-Ion battery dynamics with support vector machine-based battery model. Journal of Power Sources, 298(12), 92–101. https://doi.org/10.1016/j.jpowsour.2015.08.036
  • Kordestani, J. K., Meybodi, M. R., & Rahmani, A. M. (2020). A note on the exclusion operator in multi-swarm PSO algorithms for dynamic environments. Connection Science, 32(3), 239–263. https://doi.org/10.1080/09540091.2019.1700912
  • Kupper, M., Funk, C., Eckert, M., & Hohmann, S. (2018). Fractional extended and unscented Kalman filtering for state of charge estimation of Lithium-Ion batteries. In Proc. Annual ACC, 3855–3862. https://doi.org/10.23919/ACC.2018.8430859
  • Li, D., Ouyang, J., Li, H. Q., & Wan, J. F. (2015). State of charge estimation for LiMn2O4 power battery based on strong tracking sigma point Kalman filter. Journal of Power Sources, 279(4), 439–449. https://doi.org/10.1016/j.jpowsour.2015.01.002
  • Li, Y. Y., Sheng, H. M., Cheng, Y. H., Stroe, D. I., & Teodorescu, R. (2020). State-of-health estimation of Lithium-Ion batteries based on semi-supervised transfer component analysis. Applied Energy, 277(7), 115504. https://doi.org/10.1016/j.apenergy.2020.115504
  • Liang, W., Li, K., Long, J., Kui, X., & Zomaya, A. Y. (2020). An industrial network intrusion detection algorithm based on multifeature data clustering optimization model. IEEE Transactions on Industrial Informatics, 16(3), 2063–2071. https://doi.org/10.1109/TII.2019.2946791
  • Ling, L. Y., He, Y. L., Gong, B., & Xing, L. K. (2020). State-of-charge estimation of lithium battery using adaptive extended Kalman filter. Journal of Anhui University of Technology, 40(4), 19–25. https://doi.org/10.3969/j.issn.1672-1098.2020.04.004
  • Liu, C. L., Li, Q., & Wang, K. (2021). State-of-charge estimation and remaining useful life prediction of supercapacitors. Renewable and Sustainable Energy Reviews, 150, 111408. https://doi.org/10.1016/j.rser.2021.111408
  • Liu, F., Ma, J., Su, W. X., Chen, H. N., & He, M. W. (2016). Research on parameter self-learning unscented Kalman filtering algorithm and its application in battery charge of state estimation. Energies, 13(7), 1679. https://doi.org/10.3390/en13071679
  • Liu, K., Hu, X., Wei, Z., Li, Y., & Jiang, Y. (2020a). Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries. IEEE Transactions on Transportation Electrification, 5(4), 1225–1236. https://doi.org/10.1109/TTE.2019.2944802
  • Liu, K., Li, Y., Hu, X., Lucu, M., & Widanage, W. D. (2019). Gaussian process regression With automatic relevance determination kernel for Calendar aging prediction of Lithium-Ion batteries. IEEE Transactions on Industrial Informatics, 16(6), 3767–3777. https://doi.org/10.1109/TII.2019.2941747
  • Liu, K., Shang, Y., Ouyang, Q., & Widanage, W. D. (2020b). A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery. IEEE Transactions on Industrial Electronics, 68(99), 1–1. https://doi.org/10.1109/TIE.2020.2973876
  • Liu, W. H., Hu, E. W., Su, B., & Wang, J. (2020c). Using machine learning techniques for DSP software performance prediction at source code level. Connection Science, 33, 1–16. https://doi.org/10.1080/09540091.2020.1762542
  • Lu, J., Wu, T., & Amine, K. (2017). State-of-the-art characterization techniques for advanced Lithium-Ion batteries. Nature Energy, 2(3), 17011. https://doi.org/10.1038/nenergy.2017.11
  • Lv, J. C., Jiang, B. C., Wang, X. L., Liu, Y. R., & Fu, Y. C. (2020). Estimation of the state of charge of lithium batteries based on adaptive unscented Kalman filter algorithm. Electronics, 9(9), 1425. https://doi.org/10.3390/electronics9091425
  • Mawonou, K. S. R., Eddahech, A., Dumur, D., Beauvois, D., & Godoy, E. (2019). Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter. Journal of Power Sources, 435(9), 226710. https://doi.org/10.1016/j.jpowsour.2019.226710
  • Meng, J., Ricco, M., Luo, G., Swierczynski, M., Stroe, D. I., Stroe, A. I., & Teodorescu, R. (2018a). An overview and comparison of online implementable soc estimation methods for Lithium-Ion battery. IEEE Transactions on Industry Applications, 54(2), 1583–1591. https://doi.org/10.1109/TIA.2017.2775179
  • Meng, J. H., Luo, G. Z., Ricco, M., & Swierczynski, M. (2018b). Overview of Lithium-Ion battery modeling methods for state-of-charge estimation in electrical vehicles. Applied Sciences, 8(5), 659–675. https://doi.org/10.3390/app8050659
  • Nejad, S., & Gladwin, D. T. (2020). Online battery state of power prediction using PRBS and extended Kalman filter. IEEE Transactions on Industrial Electronics, 67(5), 3747–3755. https://doi.org/10.1109/TIE.2019.2921280
  • Nikdel, M. (2018). Various battery models for various simulation studies and applications. Renewable and Sustainable Energy Reviews, 32(4), 477–485. https://doi.org/10.1016/j.rser.2014.01.048
  • Ouyang, Q., Ma, R., Wu, Z. X., Xu, G. T., & Wang, Z. S. (2020). Adaptive square-root unscented Kalman filter-based state-of-charge estimation for Lithium-Ion batteries with model parameter online identification. Energies, 13(18), 4968. https://doi.org/10.3390/en13184968
  • Pang, J. B., Bachmatiuk, A., Yin, Y., Trzebicka, B., Zhao, L., Fu, L., Mendes, R. G., Gemming, T., Liu, Z., & Rummeli, M. H. (2017). Applications of phosphorene and black phosphorus in Energy Conversion and storage devices. Advanced Energy Materials, 8(1), 1702093. https://doi.org/10.1002/aenm.201702093
  • Pang, J. B., Mendes, R. G., Bachmatiuk, A., Zhao, L., Ta, H. Q., Gemming, T., Liu, H., Liu, Z., & Rummeli, M. H. (2019). Applications of 2D MXenes in energy conversion and storage systems check for updates. Chemical Society Reviews, 2019(48), 72–133. https://doi.org/10.1039/C8CS00324F
  • Ramezani, A., & Safarinejadian, B. (2018). A modified fractional-order unscented Kalman filter for nonlinear fractional-order systems. Circuits, Systems, and Signal Processing, 37(12), 3756–3784. https://doi.org/10.1007/s00034-017-0729-9
  • Shen, W. X. (2007). State of available capacity estimation of lead-acid batteries inelectric vehicles using neural network. Energy Conversion and Management, 48(2), 433–442. https://doi.org/10.1016/j.enconman.2006.06.023
  • Shen, Y. Q. (2018). Adaptive extended Kalman filter based state of charge determination for Lithium-Ion batteries. Electrochimica Acta, 283(9), 1432–1440. https://doi.org/10.1016/j.electacta.2018.07.078
  • Shrivastava, P., Soon, T. K., Idris, M. Y. I. B., & Mekhilef, S. (2019). Overview of model-based online state-of-charge estimation using kalmanfilter family for Lithium-Ion batteries. Renewable and Sustainable Energy Reviews, 113(10), 109233. https://doi.org/10.1016/j.rser.2019.06.040
  • Sierociuk, D., & Dzielinski, A. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci, 16(1), 129–140. https://www.researchgate.net/publication/228633560_Fractional_Kalman_filter_algorithm_for_the_states_parameters_and_order_of_fractional_system_estimation
  • Snihir, I., Rey, W., Verbitskiy, E., Belfadhel-Ayeb, A., & Notten, P. H. L. (2006). Battery open-circuit voltage estimation by a method of statistical analysis. Journal of Power Sources, 159(2), 1484–1487. https://doi.org/10.1016/j.jpowsour.2005.11.090
  • Sun, F. C., Hu, X. S., Zou, Y., & Li, S. G. (2011). Adaptive unscented Kalman filtering for state of charge estimation of a Lithium-Ion battery for electric vehicles. Energy, 36(5), 3531–3540. https://doi.org/10.1016/j.energy.2011.03.059
  • Tang, X. P., Liu, K. L., Li, K., Widanage, W. D., Kendrick, E., & Furong Gao, F. R. (2021). Recovering large-scale battery aging dataset with machine learning. Patterns, 2021, 100302. https://doi.org/10.1016/j.patter.2021.100302
  • Tian, Y., Xia, B. Z., Sun, W., Xu, Z. H., & Zheng, W. W. (2014). A modified model based state of charge estimation of power Lithium-Ion batteries using unscented Kalman filter. Journal of Power Sources, 270(12), 619–626. https://doi.org/10.1016/j.jpowsour.2014.07.143
  • Tulsyan, A., Tsai, Y., Gopaluni, R. B., & Braatz, R. D. (2016). State-of-charge estimation in Lithium-Ion batteries: A particle filter approach. Journal of Power Sources, 331(11), 208–223. https://doi.org/10.1016/j.jpowsour.2016.08.113
  • Wang, B. J., Li, S. E., Peng, H., & Liu, Z. Y. (2015). Fractional-order modeling and parameter identification for Lithium-Ion battery. Journal of Power Sources, 293(10), 151–161. https://doi.org/10.1016/j.jpowsour.2015.05.059
  • Wang, K., Liu, C. L., Sun, J. R., Zhao, K., & Wang, L. C. (2021). An improved SOC control strategy for Electric Vehicle Hybrid Energy Storage systems. Energies, 13(20), 1–15. https://doi.org/10.1155/2021/8816250
  • Wang, K., Wang, W., Wang, L., & Li, L. (2020). An improved SOC control strategy for Electric Vehicle Hybrid Energy Storage systems. Energies, 2020(13), 5297. https://doi.org/10.3390/en13205297
  • Wang, L. M., Lu, D., Liu, Q., Liu, L., & Zhao, X. L. (2019). State of charge estimation for LiFePO4 battery via dual extended &Kalman filter and charging voltage curve. Electrochimica Acta, 296(2), 1009–1017. https://doi.org/10.1016/j.electacta.2018.11.156
  • Wang, Q., Feng, X. Y., Zhang, B., Gao, T., & Yang, Y. (2019). Power battery state of charge estimation based on extended Kalman filter. Journal of Renewable and Sustainable Energy, 11(1), 014302. https://doi.org/10.1063/1.5057894
  • Wang, Q., Wang, Z., Zhang, L., Liu, P., & Zhang, Z. (2020a). A novel consistency evaluation method for series-connected battery systems based on real-world operation data. IEEE Transactions on Transportation Electrification, 7(99), 1–1. https://doi.org/10.1109/TTE.2020.3018143
  • Wang, Y. J., & Chen, Z. H. (2020). A framework for state-of-charge and remaining discharge time prediction using unscented particle filter. Applied Energy, 260(7), 114324. https://doi.org/10.1016/j.apenergy.2019.114324
  • Wang, Y. J., Li, M. C., & Chen, Z. H. (2020b). Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: Modeling, system identification, and validation. Applied Energy, 278, 115736. https://doi.org/10.1016/j.apenergy.2020.115736
  • Wei, Z. B., Zhao, J. Y., Xiong, R., Dong, G. Z., Pou, J., & Tseng, K. J. (2019). Online estimation of power capacity with noise effect attenuation for Lithium-Ion battery. IEEE Transactions on Industrial Electronics, 66(7), 5724–5735. https://doi.org/10.1109/TIE.2018.2878122
  • Weiger, T., Tian, Q., & Lian, K. (2014). State-of-charge prediction of batteries and battery–supercapacitor hybrids using artificial neural networks. Journal of Power Sources, 248(2), 1028–1033. https://doi.org/10.1016/j.jpowsour.2010.10.075
  • Westerhoff, U., Kurbach, K., Lienesch, F., & Kurrat, M. (2016). Analysis of Lithium-Ion battery models based on electrochemical impedance spectroscopy. Energy Technology, 4(7), 1620–1630. https://doi.org/10.1002/ente.201600154
  • Xiao, F., Li, C. R., Fan, Y. X., Yang, G. R., & Tang, X. (2021). State of charge estimation for Lithium-Ion battery based on Gaussian process regression with deep recurrent kernel. International Journal of Electrical Power & Energy Systems, 124(1), 106369. https://doi.org/10.1016/j.ijepes.2020.106369
  • Xiao, R. X., Shen, J. W., Li, X. Y., Yan, W. S., Pan, E. D., & Chen, Z. (2019). Comparisons of modeling and state of charge estimation for Lithium-Ion battery based on fractional order and integral order methods. Energies, 9(3), 184. https://doi.org/10.3390/en9030184
  • Xu, W., Xu, J. L., Lang, J. F., & Yan, X. F. (2019). A multi-timescale estimator for Lithium-Ion battery state of charge and state of energy estimation using dual H infinity filter. IEEE Access, 7(12), 181229–181241. https://doi.org/10.1109/ACCESS.2019.2959396
  • Xu, W. H., Wang, S. L., Fernandez, C., Yu, C. M., Fan, Y. C., & Cao, W. (2020). Novel reduced-order modeling method combined with three-particle nonlinear transform unscented Kalman filtering for the battery state-of-charge estimation. Journal of Power Electronics, 20(6), 1541–1549. https://doi.org/10.1007/s43236-020-00146-z
  • Yu, Z. H., Xiao, L. J., Li, H. Y., Zhu, X. L., & Huai, R. T. (2017). Model parameter identification for lithium batteries using the coevolutionary particle swarm optimization method. IEEE Transactions on Industrial Electronics, 67(7), 5690–5700. https://doi.org/10.1109/TIE.2017.2677319
  • Zhang, L., Fan, W., Wang, Z., Li, W., & Sauer, D. U. (2020). Battery heating for lithium-ion batteries based on multi-stage alternative currents. Journal of Energy Storage, 32, 101885. https://doi.org/10.1016/j.est.2020.101885
  • Zhang, L., Hu, X., Wang, Z., Ruan, J., & Pecht, M. G. (2020). Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications. Renewable and Sustainable Energy Reviews, 139, 110581. https://doi.org/10.1016/j.rser.2020.110581
  • Zhang, L. Q., Wang, L. X., Hinds, G., Lyu, C., Zheng, J., & Li, J. F. (2014a). Multi-objective optimization of Lithium-Ion battery model using genetic algorithm approach. Journal of Power Sources, 270(12), 367–378. https://doi.org/10.1016/j.jpowsour.2014.07.110
  • Zhang, Y. H., Song, W. J., Lin, S. L., & Feng, Z. P. (2014b). A novel model of the initial state of charge estimation for LiFePO4 batteries. Journal of Power Sources, 248(2), 1028–1033. https://doi.org/10.1016/j.jpowsour.2013.09.135
  • Zhao, L. H., Ji, G. H., & Liu, Z. H. (2017). Design and experiment of nonlinear observer with adaptive gains for battery state of charge estimation. Energies, 10(12), 2046. https://doi.org/10.3390/en10122046
  • Zheng, Z. H., Zhou, Y. Z., Sun, Y. L., Wang, Z., & Liu, B. Y. (2021). Applications of federated learning in smart cities: Recent advances, taxonomy, and open challenges. Connection Science, 1–28. https://doi.org/10.1080/09540091.2021.1936455
  • Zhu, Q., Li, L., Hu, X. S., Xiong, N., & Hu, G. D. (2017). H-infinity-based nonlinear observer design for state of charge estimation of Lithium-Ion battery with polynomial parameters. IEEE Transactions on Vehicular Technology, 66(12), 10853–10865. https://doi.org/10.1109/TVT.2017.2723522
  • Zhu, Q., Xu, M. G., Liu, W. Q., & Zheng, M. Q. (2019). A state of charge estimation method for Lithium-Ion batteries based on fractional order adaptive extended Kalman filter. Energy, 187(11), 115880. https://doi.org/10.1016/j.energy.2019.115880