1,262
Views
4
CrossRef citations to date
0
Altmetric
Advanced Machine Learning and Optimization Theories and Algorithms for Heterogeneous Data Analytics

A novel general kernel-based non-negative matrix factorisation approach for face recognition

, &
Pages 785-810 | Received 06 Apr 2021, Accepted 22 Sep 2021, Published online: 20 Oct 2021

References

  • Akbarizadeh, G. (2012). A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images. IEEE Transactions on Geoscience and Remote Sensing, 50(11), 4358–4368. https://doi.org/10.1109/TGRS.2012.2194787
  • Atif, S. M., Qazi, S., & Gillis, N. (2019). Improved SVD-based initialization for nonnegative matrix factorization using low-rank correction. Pattern Recognition Letters, 122, 53–59. https://doi.org/10.1016/j.patrec.2019.02.018.
  • Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711–720. https://doi.org/10.1109/34.598228
  • Buciu, I., Nikolaidis, N., & Pitas, I. (2008). Nonnegative matrix factorization in polynomial feature space. IEEE Transactions on Neural Networks, 19(6), 1090–1100. https://doi.org/10.1109/TNN.2008.2000162
  • Chen, J. H., Qin, J. H., Xiang, X. Y., & Tan, Y. (2020). A new encrypted image retrieval method based on feature fusion in cloud computing. International Journal of Computational Science and Engineering, 22(1), 114–123. https://doi.org/10.1504/IJCSE.2020.107261
  • Chen, W. S., Huang, X. K., Pan, B., Wang, Q., & Wang, B. H. (2017). Kernel nonnegative matrix factorization with RBF kernel function for face recognition. In International conference on machine learning & cybernetics (ICMLC) (pp. 285–289). Editors: P. Shi etc., Publisher: Institute of Electrical and Electronics Engineers Inc., United States.
  • Chen, W. S., Liu, J. M., Pan, B., & Chen, B. (2019). Face recognition using nonnegative matrix factorization with fractional power inner product kernel. Neurocomputing, 348(10), 40–53. https://doi.org/10.1016/j.neucom.2018.06.083
  • Chen, W. S., Qian, H. H., Pan, B., & Chen, B. (2020). Kernel non-negative matrix factorization using self-constructed cosine kernel. In 16th international conference on computational intelligence and security (CIS) (pp. 186–190). Editors: Y. P. Wang etc., Publisher: Elsevier B. V.
  • Cheng, J., Liu, Q. S., Lu, H. Q., & Chen, Y. W. (2005). Supervised kernel locality preserving projections for face recognition. Neurocomputing, 67(7), 443–449. https://doi.org/10.1016/j.neucom.2004.08.006
  • Davari, N., Akbarizadeh, G., & Mashhour, E. (2020). Intelligent diagnosis of incipient fault in power distribution lines based on corona detection in UV-visible videos. IEEE Transactions on Power Delivery. https://doi.org/10.1109/TPWRD.2020.3046161.
  • Deng, C., He, X., Han, J., & Huang, T. S. (2011). Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1548–1560. https://doi.org/10.1109/TPAMI.2010.231
  • Eggert, J., & Korner, E. (2004). Sparse coding and NMF. In 2004 IEEE international joint conference on neural networks (Vol. 4, pp. 2529–2533). Editors: Joos Vandewalle etc., Publisher: IEEE.
  • Fine, S., & Scheinberg, K. (2002). Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2(2), 243–264. https://doi.org/10.1162/15324430260185619.
  • Guillamet, D., Schiele, B., & Vitria, J. (2002). Analyzing non-negative matrix factorization for image classification. In 16th international conference on pattern recognition (pp. 116–119). Editors: R. Kasturi etc., Publisher: IEEE.
  • Hancer, E. (2019). Fuzzy kernel feature selection with multi-objective differential evolution algorithm. Connection Science, 31(4), 323–341. https://doi.org/10.1080/09540091.2019.1639624
  • He, C. B., Zhang, Q., Tang, Y., Liu, S. Y., & Liu, H. (2019). Network embedding using semi-supervised kernel nonnegative matrix factorization. IEEE Access, 7, 92732–92744. https://doi.org/10.1109/Access.6287639
  • He, X. (2003). Locality preserving projections. In Advances in neural information processing systems (pp. 186–197). Editors: S. Thrun etc., Publisher: MIT Press.
  • He, Z., Xie, S., Zdunek, R., Zhou, G., & Cichocki, A. (2011). Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering. IEEE Transactions on Neural Networks, 22(12), 2117–2131. https://doi.org/10.1109/TNN.2011.2172457
  • Hoyer, P. O. (2004). Nonnegative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5(9), 1457–1469. DOI:10.1016/j.neucom.2011.09.024.
  • Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(667), 788–791. https://doi.org/10.1038/44565
  • Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances in neural information processing systems (pp. 556–562). Editors: T. Dietterich etc., Publisher: MIT Press.
  • Lee, H., Yoo, J., & Choi, S. (2010). Semi-supervised nonnegative matrix factorization. IEEE Signal Processing Letters, 17(1), 4–7. https://doi.org/10.1109/LSP.2009.2027163
  • Li, S. Z., Hou, X. W., Zhang, H. J., & Cheng, Q. S. (2001). Learning spatially localized, parts-based representation. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 207–212). Editors: Anne Jacobs and Thomas Baldwin.  Publisher: IEEE.
  • Lin, C. (2014). Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19(10), 2756–2779. https://doi.org/10.1162/neco.2007.19.10.2756
  • Liu, W. X., & Zheng, N. N. (2004). Non-negative matrix factorization based methods for object recognition. Pattern Recognition Letters, 25(8), 893–897. https://doi.org/10.1016/j.patrec.2004.02.002
  • Liu, X. Z., & Ruan, H. Y. (2019). Kernel-based tensor discriminant analysis with fuzzy fusion for face recognition. International Journal of Computational Science and Engineering, 19(2), 293–300. https://doi.org/10.1504/IJCSE.2019.100233
  • Martinez, D., & Bray, A. (2003). Nonlinear blind source separation using kernels. IEEE Transactions on Neural Networks, 14(1), 228–235. https://doi.org/10.1109/TNN.2002.806624
  • Nagra, A. A., Han, F., Ling, Q. H., Abubaker, M., Ahmad, F., Mehta, S., & Apasiba, A. T. (2020). Hybrid self-inertia weight adaptive particle swarm optimisation with local search using C4.5 decision tree classifier for feature selection problems. Connection Science, 32(1), 16–36. https://doi.org/10.1080/09540091.2019.1609419
  • Novak, M., & Mammone, R. (2001). Use of nonnegative matrix factorization for language model adaptation in a lecture transcription task. In Proceedings of IEEE international conference on acoustics, speech, and signal processing (pp. 541–544). Editor: V. John Mathews. Publisher: IEEE.
  • Paatero, P., & Tapper, U. (1994). Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111–126. https://doi.org/10.1002/(ISSN)1099-095X
  • Pan, B., Lai, J., & Chen, W. S. (2011). Nonlinear nonnegative matrix factorization based on Mercer kernel construction. Pattern Recognition, 44(10–11), 2800–2810. https://doi.org/10.1016/j.patcog.2011.03.023
  • Pekalska, E., & Haasdonk, B. (2009). Kernel discriminant analysis for positive definite and indefinite kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(6), 1017–1032. https://doi.org/10.1109/TPAMI.2008.290
  • Plumbley, M. D., Abdallah, S. A., Bello, J. P., Davies, M. E., Monti, G., & Sandler, M. B. (2002). Automatic music transcription and audio source separation. Cybernetics and Systems, 33(6), 603–627. https://doi.org/10.1080/01969720290040777
  • Qian, J., Zhao, R., Wei, J., Luo, X., & Xue, Y. (2020). Feature extraction method based on point pair hierarchical clustering. Connection Science, 32(3), 223–238. https://doi.org/10.1080/09540091.2019.1674246
  • Schökopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299–1319. https://doi.org/10.1162/089976698300017467
  • Shi, M., Yi, Q. M., & Lv, J. (2012). Symmetric nonnegative matrix factorization with beta-divergences. IEEE Signal Processing Letters, 19(8), 539–542. https://doi.org/10.1109/LSP.2012.2205238
  • Tirandaz, Z., & Akbarizadeh, G. (2015). A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(3), 1244–1264. https://doi.org/10.1109/JSTARS.4609443
  • Tirandaz, Z., Akbarizadeh, G., & Kaabi, H. (2020). PolSAR image segmentation based on feature extraction and data compression using weighted neighborhood filter bank and hidden Markov random field-expectation maximization. Measurement, 153(2), 107432. https://doi.org/10.1016/j.measurement.2019.107432
  • Too, E. C., Li, Y., Gadosey, P. K., Njuki, S., & Essaf, F. (2020). Performance analysis of nonlinear activation function in convolution neural network for image classification. International Journal of Computational Science and Engineering, 21(4), 522–535. https://doi.org/10.1504/IJCSE.2020.106866
  • Turk, M. A., & Pentland, A. P. (1991). Face recognition using eigenfaces. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 586–591). Editor: Alan H. Barr. Publisher: IEEE.
  • Xu, W., Liu, X., & Gong, Y. H. (2003). Document clustering based on non-negative matrix factorization. In Proceedings of SIGIR (pp. 267–273). Editors: Charles Clarke etc., Publisher: Association for Computing Machinery, New York, NY, United States. https://doi.org/10.1145/860435.860485
  • Yi, S. Y., Lai, Z. H., He, Z. Y., Cheung, Y. M., & Liu, Y. (2017). Joint sparse principal component analysis. Pattern Recognition, 61(7), 524–536. https://doi.org/10.1016/j.patcog.2016.08.025
  • Yu, H., & Yang, J. (2001). A direct LDA algorithm for high-dimensional data: with application to face recognition. Pattern Recognition, 34(10), 2067–2070. https://doi.org/10.1016/S0031-3203(00)00162-X
  • Zafeiriou, S., & Petrou, M. (2010). Nonlinear non-negative component analysis algorithms. IEEE Transactions on Image Processing, 19(4), 1050–1066. https://doi.org/10.1109/TIP.2009.2038816
  • Zafeiriou, S., Tefas, A., Buciu, I., & Pitas, I. (2006). Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification. IEEE Transactions on Neural Networks, 17(3), 683–695. https://doi.org/10.1109/TNN.2006.873291
  • Zalpour, M., Akbarizadeh, G., & Alaei-Sheini, N. (2020). A new approach for oil tank detection using deep learning features with control false alarm rate in high-resolution satellite imagery. International Journal of Remote Sensing, 41(6), 2239–2262. https://doi.org/10.1080/01431161.2019.1685720
  • Zhang, D. Q., & Liu, W. Q. (2009). An efficient nonnegative matrix factorization approach in flexible kernel space. In Proceedings of the twenty-first international joint conference on artificial intelligence (pp 1345–1350). Publisher: International Joint Conferences on Artificial Intelligence.
  • Zhou, Y., & Cheung, Y. M. (2021). Bayesian low-tubal-rank robust tensor factorization with multi-rank determination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 62–76. https://doi.org/10.1109/TPAMI.34
  • Zhu, F., Honeine, P., & Kallas, M. (2014). Kernel nonnegative matrix factorization without the curse of the pre-image: application to unmixing hyperspectral images. In IEEE international workshop on machine learning for signal processing (pp. 1–6). Editors: Mamadou Mboup etc., Publisher: IEEE.