1,858
Views
3
CrossRef citations to date
0
Altmetric
Articles

Memory-augmented meta-learning on meta-path for fast adaptation cold-start recommendation

, , , , , , & show all
Pages 301-318 | Received 13 Jul 2021, Accepted 15 Oct 2021, Published online: 30 Nov 2021

References

  • Chang, F., Ge, L., Li, S., Wu, K., & Wang, Y. (2021). Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction. Connection Science, 33(3), 427–446. https://doi.org/10.1080/09540091.2020.1841095
  • Chen, F., Luo, M., Dong, Z., Li, Z., & He, X. (2018). Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876.
  • Chen, X., Xu, H., Zhang, Y., Tang, J., Cao, Y., Qin, Z., & Zha, H. (2018, February 5–9). Sequential recommendation with user memory networks. The 11th ACM International Conference on Web Search and Data Mining, Los Angeles, CA, pp.108–116.
  • Dacrema, M. F., Cremonesi, P., & Jannach, D. (2019, September 16–20). Are we really making much progress? A worrying analysis of recent neural recommendation approaches. The 13th ACM Conference on Recommendaer Systems, Copenhagen, Denmark, pp.101–109.
  • D'Angelo, G., Palmieri, F., Robustelli, A., & Castiglione, A. (2021). Effective classification of android malware families through dynamic features and neural networks. Connection Science, 33(3), 786–801. https://doi.org/10.1080/09540091.2021.1889977.
  • Dong, M., Yuan, F., Yao, L., Xu, X., & Zhu, L. (2020, August 23–27). MAMO: Memory-augmented meta-optimization for cold-start recommendation. The 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, California, USA, pp. 688–697.
  • Finn, C., Abbeel, P., & Levine, S. (2017, July 6–11). Model-agnostic meta-learning for fast adaptation of deep networks. International Conference on Machine Learning (ICML), Sydney, NSW, pp. 1126–1135.
  • Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint arXiv:1410.5401.
  • Hospedales, T., Antoniou, A., Micaelli, P., & Storkey, A. (2020). Meta-learning in neural networks: A survey. arXiv preprint arXiv:2004.05439.
  • Hu, H., Gu, J., Zhang, Z., Dai, J., & Wei, Y. (2018, June 18–23). Relation networks for object detection. The IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, USA, pp. 3588–3597.
  • Jiang, Y., Liang, W., Tang, J., Zhou, H., Li, K. C., & Gaudiot, J. L. (2021). A novel data representation framework based on nonnegative manifold regularisation. Connection Science, 33(2), 136–152. https://doi.org/10.1080/09540091.2020.1772722
  • Kumar, R., Bala, P. K., & Mukherjee, S. (2020). A new neighbourhood formation approach for solving cold-start user problem in collaborative filtering. International Journal of Applied Management Science, 12(2), 118–141. https://doi.org/10.1504/IJAMS.2020.106734
  • Lee, H., Im, J., Jang, S., Cho, H., & Chung, S. (2019, July 4–8). MeLU: Meta-learned user preference estimator for cold-start recommendation. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AL, pp. 1073–1082.
  • Li, X., & She, J. (2017, August 13–17). Collaborative variational autoencoder for recommender systems. The 23th ACM ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, pp. 305–314.
  • Lian, S., & Tang, M. (2021). API recommendation for mashup creation based on neural graph collaborative filtering. Connection Science. https://doi.org/10.1080/09540091.2021.1974819.
  • Liang, W., Xiao, L., Zhang, K., Tang, M., He, D., & Li, K. C. (2021). Data fusion approach for collaborative anomaly intrusion detection in blockchain-based systems. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3053842
  • Liang, W., Xie, S., Zhang, D., Li, X., & Li, K. C. (2020). A mutual security authentication method for RFID-PUF circuit based on deep learning. ACM Transactions on Internet Technology, 22(2), 1–20.
  • Lu, Y., Fang, Y., & Shi, C. (2020, August 23–27). Meta-learning on heterogeneous information networks for cold-start recommendation. The 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, California, USA, pp. 1563–1573.
  • Munkhdalai, T., & Yu, H. (2017, July 6–11). Meta networks. International Conference on Machine Learning (ICML), Sydney, NSW, pp. 2554–2563.
  • Pham, P., & Do, P. (2020). Topic-driven top-k similarity search by applying constrained meta-path based in content-based schema-enriched heterogeneous information network. International Journal of Business Intelligence and Data Mining, 17(3), 349–376. https://doi.org/10.1504/IJBIDM.2020.109295
  • Rendle, S., Gantner, Z., Freudenthaler, C., & Schmidt-Thieme, L. (2011, July 24–28). Fast context-aware recommendations with factorization machines. The 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, pp. 635–644.
  • Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T. (2016, June 10–13). Meta-learning with memory-augmented neural networks. International Conference on Machine Learning (ICML), Jeju Island, South Korea, pp. 1842–1850.
  • Shi, C., Hu, B., Zhao, W. X., & Yu, P. S. (2018). Heterogeneous information network embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 31(2), 357–370. https://doi.org/10.1109/TKDE.2018.2833443
  • Shi, C., Li, Y., Zhang, J., Sun, Y., & Yu, P. S. (2016). A survey of heterogeneous information network analysis. IEEE Transactions on Knowledge and Data Engineering, 29(1), 17–37. https://doi.org/10.1109/TKDE.2016.2598561
  • Snell, J., Swersky, K., & Zemel, R. S. (2017). Prototypical networks for few-shot learning. arXiv preprint arXiv:1703.05175.
  • Sun, Y., Han, J., Yan, X., Yu, P. S., & Wu, T. (2011). Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment, 4(11), 992–1003. https://doi.org/10.14778/3402707.3402736
  • Tang, B., Tang, M., Xia, Y., & Hsieh, M. Y. (2021). Composition pattern-aware web service recommendation based on depth factorisation machine. Connection Science, 33(4), 1–21. https://doi.org/10.1080/09540091.2021.1911933.
  • Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks for one shot learning. Advances in Neural Information Processing Systems, 29, 3630–3638.
  • Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019, July 21–25). Neural graph collaborative filtering. The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, pp. 165–174.
  • Wang, Y., & Yao, Q. (2019). Few-shot learning: A survey. arXiv preprint arXiv:1904.05046.
  • Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2016, August 8–12). Collaborative filtering and deep learning based hybrid recommendation for cold start problem. 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Auckland, New Zealand, pp. 874–877.
  • Weston, J., Chopra, S., & Bordes, A. (2014). Memory networks. arXiv preprint arXiv:1410.3916.
  • Xu, J., Xiao, L., Li, Y., Huang, M., Zhuang, Z., Weng, T. H., & Liang, W. (2021). NFMF: Neural fusion matrix factorisation for QoS prediction in service selection. Connection Science, 33(3), 1–16. https://doi.org/10.1080/09540091.2021.1889975.
  • Zhang, Y., Yin, G., & Chen, D. (2019). A dynamic cold-start recommendation method based on incremental graph pattern matching. International Journal of Computational Science and Engineering, 18(1), 89–100. https://doi.org/10.1504/IJCSE.2019.096948
  • Zhao, H., Yao, Q., Li, J., Song, Y., & Lee, D. L. (2017, August 13–17). Meta-graph based recommendation fusion over heterogeneous information networks. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , Halifax, NS, pp. 635–644.
  • Zhao, L., Wang, Y., Dong, D., & Tian, H. (2019). Learning to recommend via meta parameter partition. arXiv preprint arXiv:1912.04108.
  • Zhu, Y., Lin, J., He, S., Wang, B., Guan, Z., Liu, H., & Cai, D. (2019). Addressing the item cold-start problem by attribute-driven active learning. IEEE Transactions on Knowledge and Data Engineering, 32(4), 631–644. https://doi.org/10.1109/TKDE.2019.2891530