2,049
Views
4
CrossRef citations to date
0
Altmetric
Efficient Deep Neural Networks for Image Processing in End Side Devices

Automatic classification method of liver ultrasound standard plane images using pre-trained convolutional neural network

, , &
Pages 975-989 | Received 26 Aug 2021, Accepted 03 Dec 2021, Published online: 28 Dec 2021

References

  • Bai, X., Wang, X., Liu, X., Liu, Q., Song, J., Sebe, N., & Kim, B. (2021). Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. Pattern Recognition, 120, 108102. https://doi.org/10.1016/j.patcog.2021.108102
  • Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., Dickie, D. A., Hernández, M. V., Wardlaw, J., & Rueckert, D. (2018). GAN augmentation: Augmenting training data using generative adversarial networks. arXiv preprint arXiv:1810.10863.
  • Cai, W., Liu, D., Ning, X., Wang, C., & Xie, G. (2021). Voxel-based three-view hybrid parallel network for 3D object classification. Displays, 69, 102076. https://doi.org/10.1016/j.displa.2021.102076
  • Cao, Z., Zhou, Y., Yang, A., & Peng, S. (2021). Deep transfer learning mechanism for fine-grained cross-domain sentiment classification. Connection Science, 33(4), 911–928. https://doi.org/10.1080/09540091.2021.1912711
  • Carneiro, G., Amat, F., Georgescu, B., & Comaniciu, D. (2008a). Semantic Car based indexing of fetal anatomies from 3-D ultrasound data using global/semi-local context and sequential sampling. IEEE Computer society Conference on Computer Vision and Pattern recognition.
  • Carneiro, G., Georgescu, B., Good, S., & Comaniciu, D. (2008b). Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Transactions on Medical Imaging, 27(9), 1342–1355. https://doi.org/10.1109/TMI.2008.928917
  • Chen, H., Ni, D., & Qin, J. (2015). Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE Journal of Biomedical and Health Informatic, 19(5), 1627–1636. https://doi.org/10.1109/JBHI.2015.2425041
  • Chen, H., Wu, L., & Dou, Q. (2017). Ultrasound standard plane detection using a composite neural network framework. IEEE Transactions on Cybernetics, 47(6), 1576–1586. https://doi.org/10.1109/TCYB.2017.2685080
  • Chen, H., Zheng, Y., Park, J. H., Heng, P. A., & Zhou, S. K. (2016). Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images. In S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, & W. Wells (Eds.), Medical image computing and computer-assisted intervention – MICCAI (pp. 487–495). Springer.
  • Crino, J., Finberg, H. J., Frieden, F., Kuller, J., Odibo, A., Robichaux, A., Bohm-Velez, M., Pretorius, D. H., Sheth, S., Angtuaco, T. L., & Hamper, U. M. (2010). AIUM practice guideline for the performance of obstetric ultrasound examinations. Journal of Ultrasound in Medicine Official, 29(1), 157–166. https://doi.org/10.7863/jum.2010.29.1.157
  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. International Conference on Computer Vision & Pattern Recognition (CVPR ‘05).
  • Dudley, N. J., & Chapman, E. (2002). The importance of quality management in fetal measurement. Ultrasound in Obstetrics and Gynecology, 19(2), 190–196. https://doi.org/10.1046/j.0960-7692.2001.00549.x
  • Fawzi, A., Samulowitz, H., Turaga, D., & Frossard, P. (2016). Adaptive data augmentation for image classification. IEEE International Conference on image processing (ICIP), 3688-3692.
  • Greenspan, H., van Ginneken, B., & Summers, R. M. (2016). Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Transactions On Medical Imaging, 35(5), 1153–1159. https://doi.org/10.1109/TMI.2016.2553401
  • Kajbakhsh, N., Shin, J. Y., Gurudu, S., Hurst, R. T., Kendall, C. B., Gotway, M. B., & Liang, J. (2016a). Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Transactions on Medical Imaging, 35(3), 1299–1312. https://doi.org/10.1109/TMI.2016.2535302
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. Computer Science, 20(4), 656–661.
  • Kwitt, R., Vasconcelos, N., Razzaque, S., & Aylward, S. (2013). Localizing target structures in ultrasound video - a phantom study. Medical Image Analysis, 17(7), 712–722. https://doi.org/10.1016/j.media.2013.05.003
  • Lei, B., Tan, E. L., Chen, S., Zhuo, L., Li, S., Ni, D., & Wang, T. (2015a). Automatic recognition of fetal facial standard plane in ultrasound image via Fisher vector. PLoS One, 10(5), e0121838. https://doi.org/10.1371/journal.pone.0121838
  • Lei, B., Yao, Y., Chen, S., Li, S., Li, W., Ni, D., & Wang, T. (2015b). Discriminative learning for automatic staging of placental maturity via multi-layer Fisher vector. Science Report, 5(1), 1–11. https://doi.org/10.1038/srep12818
  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., & Ciompi, F. (2017). A survey on deep learning in medical image analysis. IEEE Transactions on Medical Imaging, 40(6), 1253–1260. https://doi.org/10.1016/j.media.2017.07.005
  • Lu, X., Georgescu, B., Zheng, Y., Otsuki, J., & Comaniciu, D. (2008). AUTOMPR: Automatic detection of standard planes in 3-D echocardiography. IEEE International symposium on Biomedical Imaging melbourne.
  • Nagi, J., Ducatelle, F., Di Caro, G. A., Cireşan, D., Meier, U., Giusti, A., Nagi, F., Schmidhuber, J., & Gambardella, L. M. (2011). Max-pooling convolutional neural networks for vision-based hand gesture recognition. 2011 IEEE International Conference on signal and image processing applications, 342-347.
  • Ni, D., Li, T., & Yang, X. (2013). Selective search and sequential detection for standard plane localization in ultrasound. In H. Yoshida, S. Warfield, & M. W. Vannier (Eds.), Abdominal Imaging computation and clinical applications (pp. 203–211). Springer.
  • Ning, X., Gong, K., Li, W., Zhang, L., Bai, X., & Tian, S. (2021). Feature refinement and filter network for person Re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 31(9), 3391–3402. https://doi.org/10.1109/TCSVT.2020.3043026
  • Qi, S., Ning, X., Yang, G., Zhang, L., Long, P., Cai, W., & Li, W. (2021). Review of multi-view 3D object recognition methods based on deep learning. Displays, 69, 102053. https://doi.org/10.1016/j.displa.2021.102053
  • Rahmatullah, B., & Noble, J. A. (2014). Anatomical object detection in fetal ultrasound: Computer-expert agreements. In T. D. Pham, K. Ichikawa, M. Oyama-Higa, D. Coomans, & X. Jiang (Eds.), Biomedical informatics and technology (pp. 207–218). Springer.
  • Rahmatullah, B., Papageorghiou, A., & Noble, J. A. (2011). Automated selection of standardized planes from ultrasound volume. In K. Suzuki, F. Wang, D. Shen, & P. Yan (Eds.), Machine learning in Medical Imaging. Berlin (pp. 35–42). Springer.
  • Rahmatullah, B., Papageorghiou, A. T., & Noble, J. A. (2012). Integration of local and global features for anatomical object detection in ultrasound. Medical Image Computing and Computer Assisted Intervention, 15(Pt 3), 402–409. https://doi.org/10.1007/978-3-642-33454-2_50
  • Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2015). CNN features Off-the-shelf: An astounding baseline for recognition. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 806-813.
  • Salomon, L. J., Bernard, J. P., Duyme, M., Doris, B., Mas, N., & Ville, Y. (2006). Feasibility and reproducibility of an image-scoring method for quality control of fetal biometry in the second trimester. Ultrasound in Obstetrics and Gynecology, 27(1), 34–40. https://doi.org/10.1002/uog.2665
  • Sato, M., Horie, K., Hara, A., Miyamoto, Y., Kurihara, K., Tomio, K., & Yokota, H. (2018). Application of deep learning to the classification of images from colposcopy. Oncology Letters, 15(2), 3518–3523. https://doi.org/10.3892/ol.2018.7762
  • Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19(1), 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442
  • Shi, J., Zhou, S., Liu, X., Zhang, Q., Lu, M., & Wang, T. (2016). Sacked depp polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing, 194(10), 87–94. https://doi.org/10.1016/j.neucom.2016.01.074
  • Shin, H. C., Roth, H. R., & Gao, M. (2016). Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35(5), 1285–1298. https://doi.org/10.1109/TMI.2016.2528162
  • Sidhu, P. (2005). The practice of ultrasound: The step by step guide to abdominal scanning. By B block. Pp. 260, 2004 (thieme medical publishers, Stuttgart, Germany), €59.95 ISBN 3 13 138361 5. The British Journal of Radiology, 78(931), 674–674. https://doi.org/10.1259/bjr.78.931.780674a
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • Spencer, J. K., & Adler, R. S. (2008). Utility of portable ultrasound in a community in Ghana. Journal of Ultrasound in Medicine, 27(12), 1735–1743. https://doi.org/10.7863/jum.2008.27.12.1735
  • Srivastava, V., & Biswas, B. (2019). CNN-based salient features in HSI image semantic target prediction. Connection Science, 32(2), 113–131. https://doi.org/10.1080/09540091.2019.1650330
  • Wang, X., Han, T. X., & Yan, S. (2010). An HOG-LBP human detector with partial occlusion handling. IEEE 12th International Conference on Computer vision, 32-39.
  • Wang, X., Wang, C., Liu, B., Zhou, X., Zhang, L., Zheng, J., & Bai, X. (2021). Multi-view stereo in the deep learning Era: A comprehensive review. Displays, 70, 102102. https://doi.org/10.1016/j.displa.2021.102102
  • Wong, S. C., Gatt, A., Stamatescu, V., & McDonnell, M. D. (2016). Understanding data augmentation for classification: When to warp? 2016 International Conference on digital image computing: Techniques and applications (DICTA).
  • Wu, E., Wu, K., Cox, D., & Lotter, W. (2018). Conditional infilling GANs for data augmentation in mammogram classification. In Image analysis for moving organ, breast, and thoracic images (pp. 98–106). Springer.
  • Wu, L., Cheng, J. Z., Li, S., Lei, B., Wang, T., & Ni, D. (2017). FUIQA: Fetal ultrasound image quality Assessment With deep convolutional networks. IEEE Transactions on Cybernetics, 47(5), 1336–1349. https://doi.org/10.1109/TCYB.2017.2671898
  • Wu, Q., Zhu, B., Yong, B., Wei, Y., Jiang, X., Zhou, R., & Zhou, Q. (2020). ClothGAN: Generation of fashionable dunhuang clothes using generative adversarial networks. Connection Science, 33(2), 341–358. https://doi.org/10.1080/09540091.2020.1822780
  • Ying, L., Qian Nan, Z., Fu Ping, W., Tuan Kiang, C., Keng Pang, L., Heng Chang, Z., Lu, C., Jun, L. G., & Nam, L. (2021). Adaptive weights learning in CNN feature fusion for crime scene investigation image classification. Connection Science, 33(3), 719–734. https://doi.org/10.1080/09540091.2021.1875987
  • You, H., Yu, L., Tian, S., Ma, X., & Cai, W. (2021). Mc-net: Multiple max-pooling integration module and cross multi-scale deconvolution network. Knowledge-Based Systems, 231, 107456. https://doi.org/10.1016/j.knosys.2021.107456
  • Yu, J., Wang, Y., Chen, P., & Shen, Y. (2008). Fetal abdominal contour extraction and measurement in ultrasound images. Ultrasound Medicine and Biology, 34(2), 169–182. https://doi.org/10.1016/j.ultrasmedbio.2007.06.026
  • Yu, Z., Tan, E. L., & Ni, D. (2018). A deep convolutional neural network based framework for automatic fetal facial standard plane recognition. IEEE Journal of Biomedical and Health Informatics, 22(3), 874–885. https://doi.org/10.1109/JBHI.2017.2705031
  • Zhang, L., Chen, S., Chin, C. T., Wang, T., & Li, S. (2012). Intelligent scanning: Automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination. Medical Physical, 39(8), 5015–5027. https://doi.org/10.1118/1.4736415