964
Views
3
CrossRef citations to date
0
Altmetric
Articles

A hybrid optimization method by incorporating adaptive response strategy for Feedforward neural network

ORCID Icon, , ORCID Icon, &
Pages 578-607 | Received 03 Jan 2020, Accepted 30 Dec 2021, Published online: 20 Jan 2022

References

  • Amponsah, A. A., Han, F., Osei-Kwakye, J., Bonah, E., & Ling, Q.H. (2021). An improved multi-leader comprehensive learning particle swarm optimisation based on gravitational search algorithm. Connection Science, 33(4), 803–834. https://doi.org/10.1080/09540091.2021.1900072
  • Andrew, F., & Asuncion, A. (2011). UCI Machine Learning Repository, 2010, 15, 22. http://archive.ics.uci.edu/ml
  • Bohat, V. K., & Arya, K. (2018). An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feedforward neural networks. Knowledge-Based Systems, 143, 192–207. https://doi.org/10.1016/j.knosys.2017.12.017
  • Christo, V. E., Nehemiah, H. K., Nahato, K. B., Brighty, J., & Kannan, A. (2020). Computer assisted medical decision-making system using genetic algorithm and extreme learning machine for diagnosing allergic rhinitis. International Journal of Bio-Inspired Computation, 16(3), 148–157. https://doi.org/10.1504/IJBIC.2020.111279
  • Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G.G., & Chen, J. (2018). Detection of malicious code variants based on deep learning. IEEE Transactions on Industrial Informatics, 14(7), 3187–3196. https://doi.org/10.1109/TII.2018.2822680
  • dos Santos Coelho, L. (2008). A quantum particle swarm optimizer with chaotic mutation operator. Chaos, Solitons & Fractals, 37(5), 1409–1418. https://doi.org/10.1016/j.chaos.2006.10.028
  • Eftimov, T., Korošec, P., & Seljak, B. K. (2017). A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics. Information Sciences, 417, 186–215. https://doi.org/10.1016/j.ins.2017.07.015
  • Eyoh, I. J., Umoh, U. A., Inyang, U. G., & Eyoh, J. E. (2020). Derivative-based learning of interval type-2 intuitionistic fuzzy logic systems for noisy regression problems. International Journal of Fuzzy Systems, 22(3), 1007–1019. https://doi.org/10.1007/s40815-020-00806-z
  • Falahiazar, L., & Shah-Hosseini, H. (2018). Optimisation of engineering system using a novel search algorithm: The spacing multi-objective Genetic algorithm. Connection Science, 30(3), 326–342. https://doi.org/10.1080/09540091.2018.1443319
  • Feng, Y., & Wang, G.G. (2021). A binary moth search algorithm based on self-learning for multidimensional knapsack problems. Future Generation Computer Systems, 126, 48–64. https://doi.org/10.1016/j.future.2021.07.033
  • Han, F., Jiang, J., Ling, Q. H., & Su, B. Y. (2019). A survey on metaheuristic optimization for random single-hidden layer feedforward neural network. Neurocomputing, 335, 261–273. https://doi.org/10.1016/j.neucom.2018.07.080
  • Huang, C. P., Xiong, W. L., & Xu, B. G. (2008). Influnce of inertia weight on astringency of particle swarm algorithm and its improvement. Computer Engineering, 34(12), 31–33. https://doi.org/10.1080/10286600801908949
  • Huang, H.S., Fan, Q.S., Wei, J.N., & Huang, D. (2019). An intelligent fault identification method of rolling bearings based on SVM optimized by improved GWO. Systems Science Control Engineering, 7(1), 289–303. https://doi.org/10.1080/21642583.2019.1650673
  • Jiang, J., Hu, G., Li, X., Xu, X., Zheng, P., & Stringer, J. (2019). Analysis and prediction of printable bridge length in fused deposition modelling based on back propagation neural network. Virtual Physical Prototyping, 14(3), 253–266. https://doi.org/10.1080/17452759.2019.1576010
  • Jiang, S., Ji, Z., & Shen, Y. (2019). A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. International Journal of Electrical Power, 55, 628–644. https://doi.org/10.1016/j.ijepes.2013.10.006
  • Karamichailidou, D., Kaloutsa, V., & Alexandridis, A. (2021). Wind turbine power curve modeling using radial basis function neural networks and tabu search. Renewable Energy, 163, 2137–2152. https://doi.org/10.1016/j.renene.2020.10.020
  • Kilany, M., Zhang, C., & Li, W. (2021). Optimization of urban land cover classification using an improved elephant herding optimization algorithm and random forest classifier. International Journal of Remote Sensing, 42(15), 5731–5753. https://doi.org/10.1080/01431161.2021.1931533
  • Konda, S. R., Panwar, L. K., Panigrahi, B. K., Kumar, R., & Gupta, V. (2021). Binary fireworks algorithm application for optimal schedule of electric vehicle reserve in traditional and restructured electricity markets. International Journal of Bio-Inspired Computation, 18(1), 38–48. https://doi.org/10.1504/IJBIC.2021.117430
  • Lalwani, S. (2021). Design and implementation of bi-level artificial bee colony algorithm to train hidden markov models for performing multiple sequence alignment of proteins. International Journal of Swarm Intelligence, 6(1), 48–64. https://doi.org/10.1504/IJSI.2021.114765
  • Lei, Z., Gao, S., Gupta, S., Cheng, J., & Yang, G. (2020). An aggregative learning gravitational search algorithm with self-adaptive gravitational constants. Expert Systems with Applications, 152, 113396, https://doi.org/10.1016/j.eswa.2020.113396.
  • Lin, J., & Yu, J. (2011, 27th–29th May). Weighted naive Bayes classification algorithm based on particle swarm optimization. 2011 IEEE 3rd International Conference on Communication software and networks.
  • Liu, A., Li, P., Deng, X., & Ren, L. (2021). A sigmoid attractiveness based improved firefly algorithm and its applications in IIR filter design. Connection Science, 33(1), 1–25. https://doi.org/10.1080/09540091.2020.1742660
  • Liu, H.B., Wang, X.K., & Tan, G.Z. (2006). Convergence analysis of particle swarm optimization and its improved algorithm based on chaos. Control and Decision, 21(6), 636.
  • Malela-Majika, J.-C. (2021). New distribution-free memory-type control charts based on the Wilcoxon rank-sum statistic. Quality Technology & Quantitative Management, 18(2), 135–155. https://doi.org/10.1080/16843703.2020.1753295
  • Mary, A. H., Miry, A. H., & Miry, M. H. (2021). An optimal robust state feedback controller for the AVR system-based Harris hawks optimization algorithm. Electric Power Components and Systems, 48(16-17), 1684–1694.
  • Mirjalili, S., Hashim, S. Z. M., & Sardroudi, H. M. (2012). Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Applied Mathematics Computation, 218(22), 11125–11137. https://doi.org/10.1016/j.amc.2012.04.069
  • Mirjalili, S., Hashim, S. Z. M., & Sardroudi, H. M. J. A. M. Computation. (2012). Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Applied Mathematics and Computation, 218(22), 11125–11137. https://doi.org/10.1016/j.amc.2012.04.069
  • Mukherjee, R. P., Roy, P. K., & Pradhan, D. K. (2021). An Efficient FNN model with chaotic oppositional based SCA to solve classification problem. IETE Journal of Research, 1–19. https://doi.org/10.1080/03772063.2021.1948923
  • Nagra, A. A., Han, F., Ling, Q. H., Abubaker, M., Ahmad, F., Mehta, S., & Apasiba, A. T. (2019). Hybrid self-inertia weight adaptive particle swarm optimisation with local search using C4. 5 decision tree classifier for feature selection problems. Connection Science, 32(1), 16–36. https://doi.org/10.1080/09540091.2019.1609419
  • Nayak, S. K., Rout, P. K., Jagadev, A. K., & Swarnkar, T. (2018). Elitism-based multi-objective differential evolution with extreme learning machine for feature selection: A novel searching technique. Connection Science, 30(4), 362–387. https://doi.org/10.1080/09540091.2018.1487384
  • Neshat, M., Pourahmad, A. A., & Rohani, Z. (2020). Improving the cooperation of fuzzy simplified memory A* search and particle swarm optimisation for path planning. International Journal of Swarm Intelligence, 5(1), 1–21. https://doi.org/10.1504/IJSI.2020.106388
  • Prasad, D. S., Chanamallu, S. R., & Prasad, K. S. (2021). Mitigation of ocular artifacts for EEG signal using improved earth worm optimization-based neural network and lifting wavelet transform. Computer Methods in Biomechanics and Biomedical Engineering, 24(5), 551–578. https://doi.org/10.1080/10255842.2020.1839893
  • Precup, R.E., David, R.C., Roman, R.C., Szedlak-Stinean, A.-I., & Petriu, E. M. (2021). Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using Slime mould algorithm. International Journal of Systems Science. https://doi.org/10.1080/00207721.2021.1927236
  • Radosavljević, J., Klimenta, D., Jevtić, M., & Arsić, N. (2018). Optimal Power flow using a Hybrid Optimization algorithm of particle swarm optimization and gravitational search algorithm. Electric Power Components and Systems, 43(17), 1958–1970. https://doi.org/10.1080/15325008.2015.1061620
  • Ram, B. D., & Rao, B. S. (2018). An Efficient ids based on fuzzy firefly optimization and fast learning network. International Journal of Engineering & Technology, 7(4.36), 557–561. https://doi.org/10.14419/ijet.v7i4.36.24137
  • Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004
  • Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2010). BGSA: Binary gravitational search algorithm. Natural Computing, 9(3), 727–745. https://doi.org/10.1007/s11047-009-9175-3
  • Rather, S. A., Bala, P. S., Ashokan, P. L., & Mercangöz, B. A. (2021). Training multi-layer perceptron using hybridization of chaotic gravitational search algorithm and particle swarm optimization. In Applying particle swarm optimization (pp. 233–262). Springer.
  • Russell, E., & James, K. (1995, 4th–6th October). A new optimizer using particle swarm theory. MHS'95. Proceedings of the sixth International symposium on micro Machine and human science.
  • Sağ, T., & Jalil, Z. A. J. (2021). Vortex search optimization algorithm for training of feed-forward neural network. International Journal of Machine Learning and Cybernetics, 12(5), 1517–1544. https://doi.org/10.1007/s13042-020-01252-x
  • Saremi, S., Mirjalili, S., & Andrew, L. (2014). Biogeography-based optimization with chaos. Neural Computing Applications, 25(5), 1077–1097. https://doi.org/10.1007/s00521-014-1597-x
  • Šešum-Čavić, V. (2020). A survey of swarm-inspired metaheuristics in P2P systems: Some theoretical considerations and hybrid forms. International Journal of Swarm Intelligence, 5(2), 244–282. https://doi.org/10.1504/IJSI.2020.111173
  • Singh, J., Banka, H., & Verma, A. K. (2018, 15th–17th March). Analysis of slope stability and detection of critical failure surface using gravitational search algorithm. 2018 4th International Conference on recent Advances in information Technology (RAIT).
  • Sreeja, N. K. (2019). A weighted pattern matching approach for classification of imbalanced data with a fireworks-based algorithm for feature selection. Connection Science, 31(2), 143–168. https://doi.org/10.1080/09540091.2018.1512558
  • Suganthan, P. N. (2018). On non-iterative learning algorithms with closed-form solution. Applied Soft Computing, 70, 1078–1082. https://doi.org/10.1016/j.asoc.2018.07.013
  • Sugiyama, T., Kutsuzawa, K., Owaki, D., & Hayashibe, M. (2021). Individual deformability compensation of soft hydraulic actuators through iterative learning-based neural network. Bioinspiration & Biomimetics, 16(5), 056016. https://doi.org/10.1088/1748-3190/ac1b6f.
  • Wang, G., Guo, L., & Duan, H. (2013). Wavelet neural network using multiple wavelet functions in target threat assessment. The Scientific World Journal, 2013, 632437. https://doi.org/10.1155/2013/632437
  • Wang, G. G., Lu, M., Dong, Y. Q., & Zhao, X. J. (2016). Self-adaptive extreme learning machine. Neural Computing and Applications, 27(2), 291–303. https://doi.org/10.1007/s00521-015-1874-3
  • Wei, J.Y., Sun, Y.H. & Su, X.N. (2010). A document clustering algorithm using particle swarm optimization. J. Chin. Soc. Sci. Tech. Inf, 29(3), 428–432.
  • Wilcoxon, F., Katti, S. K., & Wilcox, R. A. (1970). Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected Tables in Mathematical Statistics, 1, 171–259.
  • Hu, X.H., & Eberhart, R. (2002, 12th–17th May). Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of the 2002 congress on evolutionary computation. CEC'02 (Cat. No. 02TH8600).
  • Xie, L., & Wang, G.-G. (2021). Monarch butterfly optimization (handbook of AI-based metaheuristics (pp. 361-392. CRC Press.
  • Yang, J., & Ma, J. (2019). Feed-forward neural network training using sparse representation. Expert Systems with Applications, 116, 255–264. https://doi.org/10.1016/j.eswa.2018.08.038
  • Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm (nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Springer.
  • Yi, J.H., Wang, J., & Wang, G.-G. (2016). Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem. Advances in Mechanical Engineering, 8(1). https://doi.org/10.1177/1687814015624832
  • Shi, Y.H., & Eberhart, R. (1998, 4th–9th May). A modified particle swarm optimizer. 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence.
  • Zemmal, N., Azizi, N., Sellami, M., Cheriguene, S., & Ziani, A. (2021). A new hybrid system combining active learning and particle swarm optimisation for medical data classification. International Journal of Bio-Inspired Computation, 18(1), 59–68. https://doi.org/10.1504/IJBIC.2021.117427
  • Zhang, J., Li, Y., Xiao, W., & Zhang, Z. (2020). Non-iterative and fast deep learning: Multilayer extreme learning machines. Journal of the Franklin Institute, 357(13), 8925–8955. https://doi.org/10.1016/j.jfranklin.2020.04.033
  • Zhang, J. R., Zhang, J., Lok, T. M., & Lyu, M. R. (2007). A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training. Applied Mathematics and Computation, 2(185), 1026–1037. https://doi.org/10.1016/j.amc.2006.07.025
  • Zhang, Z., Zhang, A., Sun, C., Xiang, S., Guan, J., & Huang, X. (2021). Research on air traffic flow forecast based on ELM non-iterative algorithm. Mobile Networks and Applications, 26(1), 425–439. https://doi.org/10.1007/s11036-020-01679-0