1,346
Views
4
CrossRef citations to date
0
Altmetric
Efficient Deep Neural Networks for Image Processing in End Side Devices

Analysis of early fault vibration detection and analysis of offshore wind power transmission based on deep neural network

, &
Pages 1005-1017 | Received 01 Nov 2021, Accepted 30 Dec 2021, Published online: 16 Jan 2022

References

  • Abdel-Khalik, A., Massoud, S., & Ahmed, M. (2013). Optimum power transmission-based droop control design for multi-terminal hvdc of offshore wind farms. IEEE Transactions on Power Systems, 28(3), 3401–3409. https://doi.org/10.1109/TPWRS.2013.2238685
  • Aragon-Calvo, M. A. (2019). Classifying the large-scale structure of the universe with deep neural networks. Monthly Notices of the Royal Astronomical Society, 484(4), 5771–5784. https://doi.org/10.1093/mnras/stz393
  • Bai, L., Li, F., Jiang, T., & Jia, H. (2017). Robust scheduling for wind integrated energy systems considering gas pipeline and power transmission n-1 contingencies. IEEE Transactions on Power Systems(2), 1–1. https://doi.org/10.1109/TPWRS.2016.2582684
  • Bai, X., Wang, X., Liu, X., Liu, Q., & Kim, B. (2021). Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. Pattern Recognition, (2), 108102. https://doi.org/10.1016/j.patcog.2021.108102
  • Cai, W., Liu, D., & Ning, X. (2021). Voxel-based three-view hybrid parallel network for 3D object classification. Displays, 69(1), 102076. https://doi.org/10.1016/j.displa.2021.102076
  • Chakraborty, A., Mitra, A., Sarkar, S., & Das, S. (2021). Sway vibration control of floating horizontal axis wind turbine by modified spar-torus combination. Ocean Engineering, 219, 108232. https://doi.org/10.1016/j.oceaneng.2020.108232
  • Chandra, R., & Rolland, L. (2015). Global-local population memetic algorithm for solving the forward kinematics of parallel manipulators. Connection Science, 27(1), 22–39. https://doi.org/10.1080/09540091.2014.948385
  • Chapain, S., & Aly, A. M. (2021). Vibration attenuation in wind turbines: A proposed robust pendulum pounding tmd. Engineering Structures, 233, 111891. https://doi.org/10.1016/j.engstruct.2021.111891
  • Chen, Z., & Ahn, H. (2020). Item response theory based ensemble in machine learning. International Journal of Automation and Computing, 17(5), 621–636. https://doi.org/10.1007/s11633-020-1239-y
  • Chen, Z., Zhong, S., Chen, J., & Zhao, Y. (2020). DeepPursuit: Uniting Classical Wisdom and Deep Reinforcement Learning for Sparse Signal Recovery.
  • DaR, S., Özbey, M., Çatlı, A. B., & Çukur, T. (2020). A transfer-learning approach for accelerated mri using deep neural networks. Magnetic Resonance in Medicine, 84(2), 663–685. https://doi.org/10.1002/mrm.28148
  • Davila-Chacon, J., Wermter, S., & Bauer, J. (2015). Modeling development of natural multi-sensory integration using neural self-organisation and probabilistic population codes. Connection Science, 27(4), 358–376. https://doi.org/10.1080/09540091.2014.971224
  • Dong, X., Lian, J., & Wang, H. (2019). Vibration source identification of offshore wind turbine structure based on optimized spectral kurtosis and ensemble empirical mode decomposition. Ocean Engineering, 172(JAN.15), 199–212. https://doi.org/10.1016/j.oceaneng.2018.11.030
  • Du, X., Tang, S., Lu, Z., Wu, J., & Hung, P. (2020). A novel data placement strategy for data-sharing scientific workflows in heterogeneous edge-cloud Computing environments. IEEE ICWS. IEEE.
  • Du, X., Xu, J., Cai, W., Zhu, C., & Chen, Y. (2019). Oprc: An online personalized reputation calculation model in service-oriented computing environments. IEEE Access, PP(99), 1–1. https://doi.org/10.1109/ACCESS.2019.2925778
  • Egea-Alvarez, A., Bianchi, F., Junyent-Ferre, A., Gross, G., & Gomis-Bellmunt, O. (2013). Voltage control of multiterminal vsc-hvdc transmission systems for offshore wind power plants: Design and implementation in a scaled platform. IEEE Transactions on Industrial Electronics, 60(6), 2381–2391. https://doi.org/10.1109/TIE.2012.2230597
  • Elmitwally, A., Eladl, A., & Abdelkader, S. (2016). Algorithm for transmission loss allocation in market-based power systems with wind generation. Journal of Energy Engineering, 142(4), 04016004. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000341
  • Farahmand, H., Jaehnert, S., Aigner, T., & Huertas-Hernando, D. (2015). Nordic hydropower flexibility and transmission expansion to support integration of north european wind power. Wind Energy, 18(6), 1075–1103. https://doi.org/10.1002/we.1749
  • Garg, H., & Dahiya, R. (2016). Current signature analysis and its application in the condition monitoring of wind turbine for rotor faults. Energy Systems, 8(3), 495–510. https://doi.org/10.1007/s12667-016-0208-6
  • Gorman, W., Mills, A., & Wiser, R. (2019). Improving estimates of transmission capital costs for utility-scale wind and solar projects to inform renewable energy policy. Energy Policy, 135(Dec.), 110994.1–110994.21. https://doi.org/10.1016/j.enpol.2019.110994
  • Haehne, H., Schmietendorf, K., Tamrakar, S., Peinke, J., & Kettemann, S. (2018). Propagation of wind-power-induced fluctuations in power grids. Physical Review E, 99(5), 050301. https://doi.org/10.1103/PhysRevE.99.050301
  • Hb, A., & Na, B. (2020). Vibration modeling of wind turbine shaft as rigid shaft supported by ehl contact ball bearings with overhung disc system. Tribology International, 151, 106481. https://doi.org/10.1016/j.triboint.2020.106481
  • Hong, D., Zheng, J., Wu, Q., & Yang, X. (2018). Wind power forecast with error feedback and its economic benefit in power system dispatch. IET generation. Transmission Distribution, 12(21), 5730–5738. https://doi.org/10.1049/iet-gtd.2018.5635
  • Kocewiak, L. H., Aristi, I. A., Gustavsen, B., & Holdyk, A. (2019). Modelling of wind power plant transmission system for harmonic propagation and small-signal stability studies. IET Renewable Power Generation, 13(5), 717–724. https://doi.org/10.1049/iet-rpg.2018.5077
  • Li, X., Zhang, X., Wu, L., Lu, P., & Zhang, S. (2017). Transmission line overload risk assessment for power systems with wind and load-power generation correlation. IEEE Transactions on Smart Grid, 6(3), 1233–1242. https://doi.org/10.1109/TSG.2014.2387281
  • Lu, Y., Yan, D., Zhang, J., & Levy, D. (2014). Direct back propagation neural dynamic programming-based particle swarm optimisation. Connection Science, 26(4), 367–388. https://doi.org/10.1080/09540091.2014.931355
  • Mehrabi, M., Mohammadkarimi, M., Ardakani, M., & Jing, Y. (2019). Decision directed channel estimation based on deep neural network k-step predictor for mimo communications in 5 g. IEEE Journal on Selected Areas in Communications, 37(11), 2443–2456. https://doi.org/10.1109/JSAC.2019.2934004
  • Mendez, G., Hervas, R., Gervas, P., Martin, A., & Julca, F. (2019). Dynamic emphatical narration for reduced authorial burden and increased user freedom in interactive storytelling. Connection Science, 31(1), 33–59. https://doi.org/10.1080/09540091.2018.1454891
  • Ning, X., Duan, P., & Zhang, S. (2020). Real-time 3d face alignment using an encoder-decoder network with an efficient deconvolution layer. IEEE Signal Processing Letters, 27, 1944–1948. https://doi.org/10.1109/LSP.2020.3032277
  • Ning, X., Gong, K., Li, W., Zhang, L., & Tian, S. (2021). Feature refinement and filter network for person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, PP(99), 1–1. https://doi.org/10.1109/TCSVT.2020.3043026
  • Pang, N., & Guo, W. (2019). Uncertain hybrid multiple attribute group decision of offshore wind power transmission mode based on thevikor method. Sustainability, 11(21), 6183. https://doi.org/10.3390/su11216183
  • Paula, A., Oliveira, E., Oliveira, L. W., & Moraes, C. A. (2020). Reliability-constrained dynamic transmission expansion planning considering wind power generation. Electrical Engineering(1), 1–11. https://doi.org/10.1007/s00202-020-01054-y
  • Purwins, H., Li, B., Virtanen, T., Schluter, J., Chang, S. Y., & Sainath, T. N. (2019). Deep Learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing, 13(2), 206–219. https://doi.org/10.1109/JSTSP.2019.2908700.
  • Qi, S., Ning, X., & Yang, G. (2021). Review of multi-view 3D object recognition methods based on deep learning. Displays, 69(1), 102053. https://doi.org/10.1016/j.displa.2021.102053
  • Rahmann, C., & Palma-Behnke, R. (2013). Optimal allocation of wind turbines by considering transmission security constraints and power system stability. Energies, 6(1), 294–311. https://doi.org/10.3390/en6010294
  • Ruddy, J., Meere, R., & O’Donnell, T. (2016). Low frequency ac transmission for offshore wind power: A review. Renewable & Sustainable Energy Reviews, 56, 75–86. https://doi.org/10.1016/j.rser.2015.11.033
  • Song, Z., Zhao, X., Hui, Y., & Jiang, H. (2021). Progressive back-projection network for COVID-CT super-resolution. Computer Methods and Programs in Biomedicine, 208, 106193. https://doi.org/10.1016/j.cmpb.2021.106193
  • Ugranli, F., Karatepe, E., & Nielsen, A. H. (2016). Milp approach for bilevel transmission and reactive power planning considering wind curtailment. IEEE Transactions on Power Systems, 32(1), 652–661. https://doi.org/10.1109/TPWRS.2016.2562258
  • Vargas, L. S., Bustos-Turu, G., & Larraín, F. (2015). Wind power curtailment and energy storage in transmission congestion management considering power plants ramp rates. 2015 IEEE Power & Energy Society General Meeting. IEEE, 30(5), 2498–2506. https://doi.org/10.1109/TPWRS.2014.2362922
  • Wang, C., Bai, X., Wang, S., Zhou, J., & Ren, P. (2019). Multiscale visual attention networks for object detection in vhr remote sensing images. IEEE Geoence and Remote Sensing Letters, 16(2), 310–314. https://doi.org/10.1109/LGRS.2018.2872355
  • Wang, J., Liu, B., Zhou, Y., Zhao, J., & Ming, L. M. (2020). Semisupervised multiscale generative adversarial network for semantic segmentation of remote sensing image. IEEE Geoscience and Remote Sensing Letters, PP(99), 1–5. https://doi.org/10.1109/LGRS.2020.3036823
  • Wu, Y., Rosca, M., & Lillicrap, T. (2019). Deep Compressed Sensing.
  • Xiang, J., Watson, S., & Liu, Y.. (2009). Smart monitoring of wind turbines using neural networks. In  (pp. 1-8). In Sustainability in Energy and Buildings (pp. 1–8). Springer.
  • Xue, B., Zhang, M., Su, N., & Binh, T. (2016). Investigation on particle swarm optimisation for feature selection on high-dimensional data: Local search and selection bias. Connection Science, 28(3), 270–294. https://doi.org/10.1080/09540091.2016.1185392
  • Yan, C., Pang, G., Bai, X., Liu, C., & Zhou, J. (2021). Beyond triplet loss: Person re-identification with fine-grained difference-aware pairwise loss. IEEE Transactions on Multimedia, PP(99), 1–1. https://doi.org/10.1109/TMM.2021.3069562
  • You, H., Yu, L., Tian, S., Ma, X., & Cai, W. (2021). Mc-net: Multiple max-pooling integration module and cross multi-scale deconvolution network. Knowledge-Based Systems, (4), 107456. https://doi.org/10.1016/j.knosys.2021.107456
  • Zhang, L., Li, W., Yu, L., Sun, L., & Ning, X. (2021). Gmface: An explicit function for face image representation. Displays, 68(1), 102022. https://doi.org/10.1016/j.displa.2021.102022
  • Zhang, Y., Ravishankar, J., Fletcher, J., Li, R., & Han, M. (2016). Review of modular multilevel converter based multi-terminal hvdc systems for offshore wind power transmission. Renewable & Sustainable Energy Reviews, 61, 572–586. https://doi.org/10.1016/j.rser.2016.01.108
  • Zhao, Y., Pan, J., Huang, Z., Miao, Y., Jiang, J., & Wang, Z. (2020). Analysis of vibration monitoring data of an onshore wind turbine under different operational conditions. Engineering Structures, 205(Feb.15), 110071.1–110071.15. https://doi.org/10.1016/j.engstruct.2019.110071
  • Zhou, L., Li, Y., Liu, F., Jiang, Z., Yu, Q., & Liu, L. (2019). Investigation of dynamic characteristics of a monopile wind turbine based on sea test. Ocean Engineering, 189(Oct.1), 106308.1–106308.17. https://doi.org/10.1016/j.oceaneng.2019.106308