2,485
Views
8
CrossRef citations to date
0
Altmetric
Blockchain-enabled Smart Contract: Technologies and Applications

Blockchain-based anonymous authentication for traffic reporting in VANETs

ORCID Icon &
Pages 1038-1065 | Received 08 Sep 2021, Accepted 21 Dec 2021, Published online: 28 Jan 2022

References

  • Ahamad, S. S., & Pathan, A. S.K. (2021). A formally verified authentication protocol in secure framework for mobile healthcare during COVID-19-like pandemic. Connection Science, 33(3), 532–554. https://doi.org/10.1080/09540091.2020.1854180
  • Ali, I., Hassan, A., & Li, F. (2019). Authentication and privacy schemes for vehicular ad hoc networks (VANETs): A survey. Vehicular Communications, 16, 45–61. https://doi.org/10.1016/j.vehcom.2019.02.002
  • Al-Riyami, S. S., & Paterson, K. G. (2003). Certificateless public key cryptography. In C. Laih (Ed.), Advances in Cryptology - ASIACRYPT 2003, 9th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, November 30–December 4, 2003, Proceedings (Vol. 2894, pp. 452–473). Springer.
  • Ara, A., Al-Rodhaan, M., Tian, Y., & Al-Dhelaan, A. (2017). A secure privacy-preserving data aggregation scheme based on bilinear ElGamal cryptosystem for remote health monitoring systems. IEEE Access, 5, 12601–12617. https://doi.org/10.1109/ACCESS.2017.2716439
  • Azees, M., Vijayakumar, P., & Deborah, L. J. (2017). EAAP: Efficient anonymous authentication with conditional privacy-preserving scheme for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 18(9), 2467–2476. https://doi.org/10.1109/TITS.2016.2634623
  • Azees, M., Vijayakumar, P., Deborah, L. J., Karuppiah, M., & Christo, M. S. (2021). BBAAS: Blockchain-based anonymous authentication scheme for providing secure communication in VANETs. Secur. Commun. Networks, 2021, 6679882:1–6679882:11. https://doi.org/10.1155/2021/6679882
  • Bagga, P., Sutrala, A. K., Das, A. K., & Vijayakumar, P. (2021). Blockchain-based batch authentication protocol for internet of vehicles. Journal of Systems Architecture, 113(8), 101877. https://doi.org/10.1016/j.sysarc.2020.101877
  • Bellare, M., & Rogaway, P. (1993). Random oracles are practical: A paradigm for designing efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, & V. Ashby (Eds.), CCS '93, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA, November 3–5, 1993 (pp. 62–73). ACM.
  • Boneh, D., & Franklin, M. K. (2001). Identity based encryption from the weil pairing. IACR Cryptol. ePrint Arch. 2001, 90. http://eprint.iacr.org/2001/090
  • Boneh, D., Lynn, B., & Shacham, H. (2001). Short signatures from the weil pairing. In C. Boyd (Ed.), Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory and Application of Cryptology and Information Security, Gold Coast, Australia, December 9–13, 2001, Proceedings (Vol. 2248, pp. 514–532). Springer.
  • Bresson, E., Stern, J., & Szydlo, M. (2002). Threshold ring signatures and applications to ad-hoc groups. In M. Yung (Ed.), Advances in cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2002, Proceedings (Vol. 2442, pp. 465–480). Springer.
  • Cheng, L., Wen, Q., Jin, Z., Zhang, H., & Zhou, L. 2015. Cryptanalysis and improvement of a certificateless aggregate signature scheme. Information Sciences 295(15), 337-346. https://doi.org/10.1016/j.ins.2014.09.065
  • Cui, J., Ouyang, F., Ying, Z., Wei, L., & Zhong, H. (2021). Secure and efficient data sharing among vehicles based on consortium blockchain. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2021.3086976
  • Dinarvand, N., & Barati, H. (2019). An efficient and secure RFID authentication protocol using elliptic curve cryptography. Wireless Networks, 25(1), 415–428. https://doi.org/10.1007/s11276-017-1565-3
  • Goka, S., & Shigeno, H. (2018). Distributed management system for trust and reward in mobile ad hoc networks. In 15th IEEE Annual Consumer Communications & Networking Conference, CCNC 2018, Las Vegas, NV, USA, January 12–15, 2018 (pp. 1–6). IEEE.
  • He, D., Zhang, D., Li, Y., Liang, W., & Hsieh, M. Y. (2021). An efficient and DoS-resilient name lookup for NDN interest forwarding. Connection Science, 33(3), 735–752. https://doi.org/10.1080/09540091.2021.1875988
  • Hesham, A., Abdel-Hamid, A., & El-Nasr, M. A. (2011). A dynamic key distribution protocol for PKI-based VANETs. In Proceedings of the IFIP Wireless Days Conference 2011, Niagara Falls, ON, Canada, October 10–12, 2011 (pp. 1–3). IEEE.
  • Horng, S., Tzeng, S., Huang, P., Wang, X., Li, T., & Khan, M. K. (2015). An efficient certificateless aggregate signature with conditional privacy-preserving for vehicular sensor networks. Information Sciences, 317(3), 48–66. https://doi.org/10.1016/j.ins.2015.04.033
  • Kumar, P., Kumari, S., Sharma, V., Li, X., Sangaiah, A. K., & Islam, S. H. (2019). Secure CLS and CL-AS schemes designed for VANETs. The Journal of Supercomputing, 75(6), 3076–3098. https://doi.org/10.1007/s11227-018-2312-y
  • Li, A., Tian, G., Miao, M., & Gong, J. (2021). Blockchain-based cross-user data shared auditing. Connection Science, 1–21. https://doi.org/10.1080/09540091.2021.1956879
  • Li, L., Liu, J., Cheng, L., Qiu, S., Wang, W., Zhang, X., & Zhang, Z. (2018). CreditCoin: A privacy-preserving blockchain-based incentive announcement network for communications of smart vehicles. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2204–2220. https://doi.org/10.1109/TITS.2017.2777990
  • Li, X., Wang, Y., Vijayakumar, P., He, D., Kumar, N., & Ma, J. (2019). Blockchain-based mutual-healing group key distribution scheme in unmanned aerial vehicles ad-hoc network. IEEE Transactions on Vehicular Technology, 68(11), 11309–11322. https://doi.org/10.1109/TVT.2019.2943118
  • Liu, J., Li, X., Jiang, Q., Obaidat, M. S., & Vijayakumar, P. (2020). BUA: A blockchain-based unlinkable authentication in VANETs. In 2020 IEEE International Conference on Communications, ICC 2020, Dublin, Ireland, June 7–11, 2020 (pp. 1–6). IEEE.
  • Liu, M., Yu, F. R., Teng, Y., Leung, V. C. M., & Song, M. (2019). Performance optimization for blockchain-enabled industrial internet of things (IIoT) systems: A deep reinforcement learning approach. IEEE Transactions on Industrial Informatics, 15(6), 3559–3570. https://doi.org/10.1109/TII.2019.2897805
  • Liu, X., Huang, H., Xiao, F., & Ma, Z. (2020). A blockchain-based trust management with conditional privacy-preserving announcement scheme for VANETs. IEEE Internet of Things Journal, 7(5), 4101–4112. https://doi.org/10.1109/JIOT.2019.2957421
  • Lu, Z., Wang, Q., Qu, G., Zhang, H., & Liu, Z. (2019). A blockchain-based privacy-preserving authentication scheme for VANETs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(12), 2792–2801. https://doi.org/10.1109/TVLSI.2019.2929420
  • Luo, M., Zhang, Y., Khan, M. K., & He, D. (2017). A secure and efficient identity-based mutual authentication scheme with smart card using elliptic curve cryptography. International Journal of Communication Systems, 30(16), e3333. https://doi.org/10.1002/dac.3333
  • Ma, J., Li, T., Cui, J., Ying, Z., & Cheng, J. (2021). Attribute-based secure announcement sharing among vehicles using blockchain. IEEE Internet of Things Journal, 8(13), 10873–10883. https://doi.org/10.1109/JIOT.2021.3050802
  • Malhi, A. K., & Batra, S. (2015). An efficient certificateless aggregate signature scheme for vehicular ad-hoc networks. Discrete Mathematics & Theoretical Computer Science, 17(1), 317–338. http://dmtcs.episciences.org/2106
  • Manvi, S. S., & Tangade, S. (2017). A survey on authentication schemes in VANETs for secured communication. Vehicular Communications, 9, 19–30. https://doi.org/10.1016/j.vehcom.2017.02.001
  • Mejri, M. N., Ben-Othman, J., & Hamdi, M. (2014). Survey on VANET security challenges and possible cryptographic solutions. Vehicular Communications, 1(2), 53–66. https://doi.org/10.1016/j.vehcom.2014.05.001
  • Mondal, H. S., Hasan, M. T., Hossain, M. M., Arifin, M. M., & Saha, R. (2018). A RSA-based efficient dynamic secure algorithm for ensuring data security. In M. S. Uddin& J. C. Bansal (Eds.), Proceedings of International Joint Conference on Computational Intelligence, IJCCI 2018, Dhaka, Bangladesh, December 14–15, 2018 (pp. 643–653). Springer.
  • Pu, Y., Xiang, T., Hu, C., Alrawais, A., & Yan, H. (2020). An efficient blockchain-based privacy preserving scheme for vehicular social networks. Information Sciences, 540(8), 308–324. https://doi.org/10.1016/j.ins.2020.05.087
  • Qu, F., Wu, Z., Wang, F., & Cho, W. (2015). A security and privacy review of VANETs. IEEE Transactions on Intelligent Transportation Systems, 16(6), 2985–2996. https://doi.org/10.1109/TITS.2015.2439292
  • Raya, M., Aziz, A., & Hubaux, J. (2006). Efficient secure aggregation in VANETs. In W. Holfelder, D. B. Johnson, H. Hartenstein, & V. Bahl (Eds), Proceedings of the Third International Workshop on Vehicular Ad Hoc Networks, VANET 2006, Los Angeles, CA, USA, September 29, 2007 (pp. 67–75). ACM.
  • Salem, A. H., Abdel-Hamid, A., & El-Nasr, M. A. (2016). The case for dynamic key distribution for PKI-based VANETs. CoRR, abs/1605.04696.
  • Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612–613. https://doi.org/10.1145/359168.359176
  • Shamir, A. (1984). Identity-based cryptosystems and signature schemes. In G. R. Blakley & D. Chaum (Eds.), Advances in Cryptology, Proceedings of CRYPTO '84, Santa Barbara, CA, USA, August 19–22, 1984, Proceedings (Vol. 196, pp. 47–53). Springer.
  • Shao, J., Lin, X., Lu, R., & Zuo, C. (2016). A threshold anonymous authentication protocol for VANETs. IEEE Transactions on Vehicular Technology, 65(3), 1711–1720. https://doi.org/10.1109/TVT.2015.2405853
  • Shi, S., He, D., Li, L., Kumar, N., Khan, M. K., & Choo, K. R. (2020). Applications of blockchain in ensuring the security and privacy of electronic health record systems: A survey. Computers & Security, 97(5), 101966. https://doi.org/10.1016/j.cose.2020.101966
  • Slagell, A. J., Bonilla, R., & Yurcik, W. (2006). A survey of PKI components and scalability issues. In Proceedings of the 25th IEEE International Performance Computing and Communications Conference, IPCCC 2006, April 10–12, 2006, Phoenix, Arizona, USA. IEEE.
  • Tang, B., & Fedak, G. (2017). WukaStore: Scalable, configurable and reliable data storage on hybrid volunteered cloud and desktop systems. IEEE Transactions on Big Data. https://doi.org/10.1109/TBDATA.2017.2758791
  • Tang, B., Tang, M., Xia, Y., & Hsieh, M. Y. (2021). Composition pattern-aware web service recommendation based on depth factorisation machine. Connection Science, 33(4), 870–890. https://doi.org/10.1080/09540091.2021.1911933
  • Tsai, J. (2017). A new efficient certificateless short signature scheme using bilinear pairings. IEEE Systems Journal, 11(4), 2395–2402. https://doi.org/10.1109/JSYST.2015.2490163
  • Vijayakumar, P., Azees, M., Kannan, A., & Deborah, L. J. (2016). Dual authentication and key management techniques for secure data transmission in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1015–1028. https://doi.org/10.1109/TITS.2015.2492981
  • Wang, S., & Yao, N. (2017). LIAP: A local identity-based anonymous message authentication protocol in VANETs. Computer Communications, 112(13), 154–164. https://doi.org/10.1016/j.comcom.2017.09.005
  • Wang, S. H., C. H. Tu, & Juang, J. C. (2021). Automatic traffic modelling for creating digital twins to facilitate autonomous vehicle development. Connection Science, 1–20. https://doi.org/10.1080/09540091.2021.1997914
  • Wang, X., Zha, X., Ni, W., Liu, R. P., Guo, Y. J., Niu, X., & Zheng, K. (2019). Survey on blockchain for internet of things. Computer Communications, 136(7), 10–29. https://doi.org/10.1016/j.comcom.2019.01.006
  • Wu, L., Wang, J., Choo, K. R., Li, Y., & He, D. (2017). An efficient provably-secure identity-based authentication scheme using bilinear pairings for ad hoc network. Journal of Information Security and Applications, 37, 112–121. https://doi.org/10.1016/j.jisa.2017.10.003
  • Xiao, L., Xie, S., Han, D., Liang, W., Guo, J., & Chou, W. K. (2021). A lightweight authentication scheme for telecare medical information system. Connection Science, 33(3), 769–785. https://doi.org/10.1080/09540091.2021.1889976
  • Xiong, H., Guan, Z., Chen, Z., & Li, F. (2013). An efficient certificateless aggregate signature with constant pairing computations. Information Sciences, 219(3), 225–235. https://doi.org/10.1016/j.ins.2012.07.004
  • Yang, Y., Chou, L., Tseng, C., Tseng, F., & Liu, C. (2019). Blockchain-based traffic event validation and trust verification for VANETs. IEEE Access, 7, 30868–30877. https://doi.org/10.1109/ACCESS.2019.2903202
  • Zeadally, S., Hunt, R., Chen, Y., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241. https://doi.org/10.1007/s11235-010-9400-5
  • Zhang, L., Wu, Q., Qin, B., & Domingo-Ferrer, J. (2011). APPA: Aggregate privacy-preserving authentication in vehicular ad hoc networks. In X. Lai, J. Zhou, & H. Li (Eds.), Information Security, 14th International Conference, ISC 2011, Xi'an, China, October 26–29, 2011. Proceedings (Vol. 7001, pp. 293–308). Springer.
  • Zhang, L., Xu, J., Obaidat, M. S., Li, X., & Vijayakumar, P. (2021). A PUF-based lightweight authentication and key agreement protocol for smart UAV networks. IET Communications. https://doi.org/10.1049/cmu2.12295
  • Zhang, S., Yao, T., V. K. A. Sandor, Weng, T. H., Liang, W., & Su, J. (2021). A novel blockchain-based privacy-preserving framework for online social networks. Connection Science, 33(3), 555–575. https://doi.org/10.1080/09540091.2020.1854181
  • Zhao, H., Yao, L., Zeng, Z., Li, D., Xie, J., Zhu, W., & Tang, J. (2021). An edge streaming data processing framework for autonomous driving. Connection Science, 33(2), 173–200. https://doi.org/10.1080/09540091.2020.1782840
  • Zou, S., Xi, J., Wang, S., Lu, Y., & Xu, G. (2019). Reportcoin: A novel blockchain-based incentive anonymous reporting system. IEEE Access, 7, 65544–65559. https://doi.org/10.1109/ACCESS.2019.2915956