1,073
Views
6
CrossRef citations to date
0
Altmetric
Articles

ASM-VoFDehaze: a real-time defogging method of zinc froth image

, , , &
Pages 709-731 | Received 19 Oct 2021, Accepted 28 Jan 2022, Published online: 17 Feb 2022

References

  • Alajarmeh, A., Salam, R., Abdulrahim, K., Marhusin, M., Zaidan, A., & Zaidan, B. (2018). Real-time framework for image dehazing based on linear transmission and constant-time airlight estimation. Information Sciences, 436(22), 108–130. https://doi.org/10.1016/j.ins.2018.01.009
  • Aldrich, C., Marais, C., Shean, B., & Cilliers, J. (2010). Online monitoring and control of froth flotation systems with machine vision: A review. International Journal of Mineral Processing, 96(1–4), 1–13. https://doi.org/10.1016/j.minpro.2010.04.005
  • Berman, D., Treibitz, T., & Avidan, S. (2016, June 27–30). Non-local image dehazing. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Las Vegas, NV (pp. 1674–1682). IEEE. https://doi.org/10.1109/CVPR.2016.185
  • Cai, B., Xu, X., Jia, K., Qing, C., & Tao, D. (2016). Dehazenet: An end-to-end system for single image haze removal. IEEE Transactions on Image Processing, 25(11), 5187–5198. https://doi.org/10.1109/TIP.2016.2598681
  • Fattal, R. (2008). Single image dehazing. ACM Transactions on Graphics, 27(3), 1–9. https://doi.org/10.1145/1360612.1360671
  • Fujita, S., & Fukushima, N. (2017). Extending guided image filtering for high-dimensional signals. In J. Braz, N. Magnenat-Thalmann, P. Richard, L. Linsen, A. Telea, S. Battiato, & F. Imai (Eds.), Computer vision, imaging and computer graphics theory and applications, VISIGRAPP 2016 (Vol. 693, Communications in Computer and Information Science, pp. 439–453). Springer. https://doi.org/10.1007/978-3-319-64870-5_21
  • Ge, G., Wei, Z., & Zhao, J. (2015). Fast single-image dehazing using linear transformation. Optik, 126(21), 3245–3252. https://doi.org/10.1016/j.ijleo.2015.07.138
  • Hautiere, N., Tarel, J. P., Aubert, D., & Dumont, E. (2008). Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis & Stereology, 27(2), 87–95. https://doi.org/10.5566/ias.v27.p87-95
  • He, K., Sun, J., & Tang, X. (2010). Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2341–2353. https://doi.org/10.1109/TPAMI.2010.168
  • Jinping, L., Weihua, G., Xuemin, M., Zhaohui, T., & Jianqi, L. (2010). Flotation froth image texture feature extraction based on Gabor wavelets. Chinese Journal of Scientific Instrument, 31(8), 1769–1775. https://doi.org/10.19650/j.cnki.cjsi.2010.08.015
  • Ju, M., Zhang, D., & Wang, X. (2017). Single image dehazing via an improved atmospheric scattering model. The Visual Computer, 33(12), 1613–1625. https://doi.org/10.1007/s00371-016-1305-1
  • Khmag, A., Al-Haddad, S., Ramli, A. R., & Kalantar, B. (2018). Single image dehazing using second-generation wavelet transforms and the mean vector L2-norm. The Visual Computer, 34(5), 675–688. https://doi.org/10.1007/s00371-017-1406-5
  • Kim, J. H., Jang, W. D., Sim, J. Y., & Kim, C. S. (2013). Optimized contrast enhancement for real-time image and video dehazing. Journal of Visual Communication and Image Representation, 24(3), 410–425. https://doi.org/10.1016/j.jvcir.2013.02.004
  • Kim, J. H., Sim, J. Y., & Kim, C. S. (2011, May 22–27). Single image dehazing based on contrast enhancement. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic (pp. 1273–1276). IEEE. https://doi.org/10.1109/ICASSP.2011.5946643
  • Li, B., Peng, X., Wang, Z., Xu, J., & Feng, D. (2017, October 22–29). Aod-net: All-in-one dehazing network. Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy (pp. 4770–4778). IEEE. https://doi.org/10.1109/ICCV.2017.511
  • Li, C., He, T., Wang, Y., Zhang, L., Liu, R., & Zheng, J. (2020). Pipeline image haze removal system using dark channel prior on cloud processing platform. International Journal of Computational Science and Engineering, 22(1), 84–95. https://doi.org/10.1504/IJCSE.2020.107254
  • Li, Y., Lu, H., Li, K. C., Kim, H., & Serikawa, S. (2018). Non-uniform de-scattering and de-blurring of underwater images. Mobile Networks and Applications, 23(2), 352–362. https://doi.org/10.1007/s11036-017-0933-7
  • Liang, W., Long, J., Li, K. C., Xu, J., Ma, N., & Lei, X. (2021, April). A fast defogging image recognition algorithm based on bilateral hybrid filtering. ACM Transactions on Multimedia Computing, Communications, and Applications, 17(2), 1–16. https://doi.org/10.1145/3391297
  • Liang, W., Ning, Z., Xie, S., Hu, Y., Lu, S., & Zhang, D. (2021). Secure fusion approach for the internet of things in smart autonomous multi-robot systems. Information Sciences, 579(1), 468–482. https://doi.org/10.1016/j.ins.2021.08.035
  • Liang, W., Xie, S., Long, J., Li, K. C., Zhang, D., & Li, K. (2019). A double PUF-based RFID identity authentication protocol in service-centric internet of things environments. Information Sciences, 503(10), 129–147. https://doi.org/10.1016/j.ins.2019.06.047https://www.sciencedirect.com/science/article/pii/S0020025519305857.
  • McCartney, E. J. (1976). Optics of the atmosphere: Scattering by molecules and particles. Physics Today, 30(5), 76–77. https://doi.org/10.1063/1.3037551
  • Narasimhan, S. G., & Nayar, S. K. (2000, June 15). Chromatic framework for vision in bad weather. Proceedings IEEE conference on Computer Vision and Pattern Recognition, CVPR 2000 (Cat. No.PR00662), Hilton Head, SC (pp. 598–605). IEEE. https://doi.org/10.1109/CVPR.2000.855874
  • Narasimhan, S. G., & Nayar, S. K. (2002). Vision and the atmosphere. International Journal of Computer Vision, 48(3), 233–254. https://doi.org/10.1023/A:1016328200723
  • Oakley, J. P., & Satherley, B. L. (1998). Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 7(2), 167–179. https://doi.org/10.1109/83.660994
  • Petro, A. B., Sbert, C., & Morel, J. M. (2014). Multiscale retinex. Image Processing On Line, 4, 71–88. https://doi.org/10.5201/ipol.2014.107
  • Sandor, V. K. A., Lin, Y., Li, X., Lin, F., & Zhang, S. (2019). Efficient decentralized multi-authority attribute based encryption for mobile cloud data storage. Journal of Network and Computer Applications, 129(4), 25–36. https://doi.org/10.1016/j.jnca.2019.01.003
  • Stark, J. A. (2000). Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 9(5), 889–896. https://doi.org/10.1109/83.841534
  • Sun, X., Wang, Q., Zhang, X., Xu, C., & Zhang, W. (2021). Deep blur detection network with boundary-aware multi-scale features. Connection Science. https://doi.org/10.1080/09540091.2021.1933906
  • Tang, K., Yang, J., & Wang, J. (2014, June 23–28). Investigating haze-relevant features in a learning framework for image dehazing. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Columbus, OH (pp. 2995–3000). IEEE. https://doi.org/10.1109/CVPR.2014.383
  • Tarel, J. P., & Hautiere, N. (2009, September 29-October 2). Fast visibility restoration from a single color or gray level image. IEEE 12th international conference on Computer Vision, Kyoto, Japan (pp. 2201–2208). IEEE. https://doi.org/10.1109/ICCV.2009.5459251
  • Wang, J. B., He, N., Zhang, L. L., & Lu, K. (2015). Single image dehazing with a physical model and dark channel prior. Neurocomputing, 149(3), 718–728. https://doi.org/10.1016/j.neucom.2014.08.005
  • Wang, W., Yuan, X., Wu, X., & Liu, Y. (2017). Fast image dehazing method based on linear transformation. IEEE Transactions on Multimedia, 19(6), 1142–1155. https://doi.org/10.1109/TMM.2017.2652069
  • Wei, Z., Zhu, G., Liang, X., & Liu, W. (2020). An image fusion dehazing algorithm based on dark channel prior and retinex. International Journal of Computational Science and Engineering, 23(2), 115–123. https://doi.org/10.1504/IJCSE.2020.110556
  • Wu, X., Liu, X. Y., & Yuan, F. (2021). Fast dehazing method for improving the image quality in pellet size measurement. Computers in Industry, 128, 103438. https://doi.org/10.1016/j.compind.2021.103438
  • Xi, C., Feng, H. Y., & Wang, J. L. (2021). Robust coal granularity estimation via deep neural network with an image enhancement layer. Connection Science, 33(3), 1–30. https://doi.org/10.1080/09540091.2021.2017853
  • Xu, M., Yang, J., Zhao, D., & Zhao, H. (2015). An image-enhancement method based on variable-order fractional differential operators. Bio-medical Materials and Engineering, 26(S1), S1325–S1333. https://doi.org/10.3233/BME-151430
  • Yu, L., Duan, Y., & Li, K. C. (2021). A real-world service mashup platform based on data integration, information synthesis, and knowledge fusion. Connection Science, 33(3), 463–481. https://doi.org/10.1080/09540091.2020.1841110
  • Yu, X., Xiao, C., Deng, M., & Peng, L. (2011, August 12–15). A classification algorithm to distinguish image as haze or non-haze. Sixth international conference on Image and Graphics, Hefei, China (pp. 286–289). IEEE. https://doi.org/10.1109/ICIG.2011.22
  • Zeng, F., Wu, Q., & Du, J. (2014). Foggy image enhancement based on filter variable multi-scale retinex. Applied Mechanics and Materials, 505–506, 1041–1045. https://doi.org/10.4028/www.scientific.net/AMM.505-506.1041
  • Zhang, J., Cheng, Z., Cheng, X., & Chen, B. (2021). OAC-HAS: Outsourced access control with hidden access structures in fog-enhanced IoT systems. Connection Science, 33(4), 1060–1076. https://doi.org/10.1080/09540091.2020.1841096
  • Zhou, J., & Zhou, F. (2013, December 23–24). Single image dehazing motivated by Retinex theory. 2nd international symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), Toronto, ON (pp. 243–247). IEEE. https://doi.org/10.1109/IMSNA.2013.6743260