1,876
Views
5
CrossRef citations to date
0
Altmetric
Software Quality, Reliability and Security

Multi-featured spatial-temporal and dynamic multi-graph convolutional network for metro passenger flow prediction

, , , &
Pages 1252-1272 | Received 03 Feb 2022, Accepted 29 Mar 2022, Published online: 26 Apr 2022

References

  • Bai, J., Zhu, J., Song, Y., Zhao, L., Hou, Z., Du, R., & Li, H. (2021). A3T-GCN: Attention temporal graph convolutional network for traffic forecasting. ISPRS International Journal of Geo-Information, 10(7), 485–494. https://doi.org/10.3390/ijgi10070485
  • Cao, Z., Zhou, Y., Yang, A., & Peng, S. (2021). Deep transfer learning mechanism for fine-grained cross-domain sentiment classification. Connection Science, 33(4), 911–928. https://doi.org/10.1080/09540091.2021.1912711
  • Chang, F., Ge, L., Li, S., Wu, K., & Wang, Y. (2021). Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction. Connection Science, 33(3), 427–446. https://doi.org/10.1080/09540091.2020.1841095
  • Chen, Y. F., Lin, Y. K., & Huang, C. F. (2021). Using deep neural networks to evaluate the system reliability of manufacturing networks. International Journal of Performability Engineering, 17(7), 600–608. https://doi.org/10.23940/ijpe.21.07.p4.600608
  • Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2020). Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transportation Research Part C: Emerging Technologies, 118, 102674. https://doi.org/10.1016/j.trc.2020.102674
  • Fu, R., Zhang, Z., & Li, L. (2016). Using LSTM and GRU neural network methods for traffic flow prediction. Proceeding of 2016 Youth Academic Annual Conference of Chinese Association of Automation (YAC) (pp. 324–328).
  • Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., Ye, J., & Liu, Y. (2019). Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. Proceedings of 2019 AAAI Conference on Artificial Intelligence (pp. 3656–3663). https://doi.org/10.1609/aaai.v33i01.33013656
  • Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of 2019 AAAI Conference on Artificial Intelligence (pp. 922–929). https://doi.org/10.1016/j.dcan.2021.09.007
  • Guo, S., Lin, Y., Wan, H., Li, X., & Cong, G. (2021). Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2021.3056502
  • Gong, Y., Li, Z., Zhang, J., Liu, W., & Zheng, Y. (2022). Online spatio-temporal crowd flow distribution prediction for complex metro system. IEEE Transactions on Knowledge and Data Engineering, 34(2), 865–880. https://doi.org/10.1109/TKDE.2020.2985952
  • Han, Y., Wang, S., Ren, Y., Wang, C., Gao, P., & Chen, G. (2019). Predicting station-level short-term passenger flow in a citywide metro network using spatiotemporal graph convolutional neural networks. ISPRS International Journal of Geo-Information, 8(6), 243–267. https://doi.org/10.3390/ijgi8060243
  • Hema, D., & Kumar, K. A. (2021). An optimized intelligent driver’s aggressive behaviour prediction model using GA-LSTM. International Journal of Performability Engineering, 17(10), 880–888. https://doi.org/10.23940/ijpe.21.10.p6.880888
  • Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97. https://doi.org/10.1109/MSP.2012.2205597
  • Hou, Z., Dong, H., Gao, S., Nicholson, G., Chen, L., & Roberts, C. (2019). Energy-saving metro train timetable rescheduling model considering ato profiles and dynamic passenger flow. IEEE Transactions on Intelligent Transportation Systems, 20(7), 2774–2785. https://doi.org/10.1109/TITS.2019.2906483
  • Hu, N., Zhang, D., Xie, K., Liang, W., & Hsieh, M.-Y. (2022). Graph learning-based spatial-temporal graph convolutional neural networks for traffic forecasting. Connection Science, 34(1), 429–448. https://doi.org/10.1080/09540091.2021.2006607
  • Ji, J., & Hou, J. (2017). Forecast on bus trip demand based on arima models and gated recurrent unit neural networks. Proceedings of 2017 International Conference on Computer Systems, Electronics and Control (pp. 105–108). https://doi.org/10.1109/ICCSEC.2017.8446813
  • Jiang, D., Qu, H., Zhao, J., Zhao, J., & Hsieh, M.-Y. (2021). Aggregating multi-scale contextual features from multiple stages for semantic image segmentation. Connection Science, 33(3), 605–622. https://doi.org/10.1080/09540091.2020.1862059
  • Karlaftis, M. G., & Vlahogianni, E. I. (2011). Statistical methods versus neural networks in transportation research: Differences, similarities, and some insights. Transportation Research Part C: Emerging Technologies, 19(3), 387–399. https://doi.org/10.1016/j.trc.2010.10.004
  • Khodayar, M., & Wang, J. (2019). Spatio-temporal graph deep neural network for short-term wind speed forecasting. IEEE Transactions on Sustainable Energy, 10(2), 670–681. https://doi.org/10.1109/TSTE.2018.2844102
  • La Gatta, V., Moscato, V., Postiglione, M., & Sperli, G. (2021). An epidemiological neural network exploiting dynamic graph structured data applied to the covid-19 outbreak. IEEE Transactions on Big Data, 7(1), 45–55. https://doi.org/10.1109/TBDATA.2020.3032755
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Li, C., Cui, Z., Zheng, W., Xu, C., & Yang, J. (2018). Spatio-temporal graph convolution for skeleton based action recognition. Proceedings of 2018 AAAI Conference on Artificial Intelligence (pp. 3482–3489). https://arxiv.org/abs/1801.07455v2
  • Li, Z., Yang, J., Yao, D., Wang, J., & Pang, Q. (2020). Reliability analysis of a metro braking control system based on fuzzy go method. International Journal of Performability Engineering, 16(11), 1826–1834. https://doi.org/10.23940/ijpe.20.11.p14.18261834
  • Liu, Q., Guo, Q., Wang, W., Zhang, Y., & Kang, Q. (2021). An automatic detection algorithm of metro passenger boarding and alighting based on deep learning and optical flow. IEEE Transactions on Instrumentation and Measurement, 70, 1–13. https://doi.org/10.1109/TIM.2021.3054627
  • Liu, Y., Liu, Z., & Jia, R. (2019). DeepPF: A deep learning based architecture for metro passenger flow prediction. Transportation Research Part C: Emerging Technologies, 101, 18–34. https://doi.org/10.1016/j.trc.2019.01.027
  • Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. (2015). Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, 54, 187–197. https://doi.org/10.1016/j.trc.2015.03.014
  • Mei, D., Yan, Q., Gao, L., & Xu, E. (2017). A short-term traffic flow prediction model based on EMD and GPSO-SVM. Proceeding of 2017 IEEE Advanced Information Technology, Electronic and Automation Control Conference (pp. 2554–2558).
  • Qian, T., Wang, F., Xu, Y.-J., Jiang, Y., Sun, T., & Yu, Y. (2020). CABIN: A novel cooperative attention based location prediction network using internal-external trajectory dependencies. Proceedings of the 29th International Conference on Artificial Neural Networks (pp. 521–532). https://doi.org/10.1007/978-3-030-61616-8-42
  • Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., & Mueller, K.-R. (2021). Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 109(3), 247–278. https://doi.org/10.1109/JPROC.2021.3060483
  • Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W. K., & Woo, W.-C. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Proceedings of 2015 Conference and Workshop on Neural Information Processing Systems (pp. 802–810). https://arxiv.org/abs/1506.04214
  • Song, X., Guo, Y., Li, N., & Zhang, L. (2021). Online traffic flow prediction for edge computing-enhanced autonomous and connected vehicles. IEEE Transactions on Vehicular Technology, 70(3), 2101–2111. https://doi.org/10.1109/TVT.2021.3057109
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł, & Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 5998–6008). https://arxiv.org/abs/1706.03762
  • Wang, H. Y., & Wang, Y. Z. (2015). Vessel traffic flow forecasting with the combined model based on support vector machine. Proceedings of 2015 International Conference on Transportation Information and Safety (pp. 695–698). https://doi.org/10.1109/ICTIS.2015.7232151
  • Wang, J., Zhang, Y., Wei, Y., Hu, Y., Piao, X., & Yin, B. (2021). Metro passenger flow prediction via dynamic hypergraph convolution networks. IEEE Transactions on Intelligent Transportation Systems, 22(12), 7891–7903. https://doi.org/10.1109/TITS.2021.3072743
  • Wang, L., Chen, J., Chen, Z., Liu, Y., & Yang, H. (2022). Multi-stream part-fused graph convolutional networks for skeleton-based gait recognition. Connection Science, 34(1), 652–669. https://doi.org/10.1080/09540091.2022.2026294
  • Wang, X. P., Huang, L., Huang, H., Li, B., Xia, Z., & Li, J. (2020). An ensemble learning model for short-term passenger flow prediction. Complexity, 2020, 6694186. https://doi.org/10.1155/2020/6694186
  • Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., & Pei, J. (2020). AM-GCN: Adaptive multi-channel graph convolutional networks. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1243–1253). https://doi.org/10.1145/3394486.3403177
  • Wu, Z., Pan, S., Long, G., Jiang, J., & Zhang, C. (2019). Graph wavenet for deep spatial-temporal graph modeling. Proceedings of the 28th International Joint Conference on Artificial Intelligence (pp. 1907–1913). https://doi.org/10.24963/ijcai.2019/264
  • Yinna, Y., Li, C., & Feng, X. (2019). Passenger flow prediction in bus transportation system using AMIRA models with big data. Proceedings of 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (pp. 436–443). https://doi.org/10.1109/CyberC.2019.00081
  • Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. Proceedings of the 27th International Joint Conference on Artificial Intelligence (pp. 3634–3640). https://doi.org/10.24963/ijcai.2018/505
  • Zhang, J., Che, H., Chen, F., Ma, W., & He, Z. (2021). Short-term origin-destination demand prediction in urban rail transit systems: A channel-wise attentive split-convolutional neural network method. Transportation Research Part C: Emerging Technologies, 124, 102928. https://doi.org/10.1016/j.trc.2020.102928
  • Zhang, J., Chen, F., Guo, Y., & Li, X. (2020). Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit. IEEE Transactions on Intelligent Transportation Systems, 14(10), 1210–1217. https://doi.org/10.1049/iet-its.2019.0873
  • Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., & Li, H. (2020). T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3848–3858. https://doi.org/10.1109/TITS.2019.2935152