1,089
Views
1
CrossRef citations to date
0
Altmetric
Special Issue: Software Quality, Reliability and Security

Using active learning selection approach for cross-project software defect prediction

, ORCID Icon, &
Pages 1482-1499 | Received 10 Feb 2022, Accepted 11 May 2022, Published online: 02 Jun 2022

References

  • Bengar, J. Z., van de Weijer, J., Twardowski, B., & Raducanu, B. (2021). Reducing label effort: Self-supervised meets active learning. In 2021 IEEE/CVF International conference on computer vision workshops (ICCVW).https://doi.org/10.1109/iccvw54120.2021.00188
  • Bhosle, N., & Kokare, M. (2020). Random forest-based active learning for content-based image retrieval. International Journal of Intelligent Information and Database Systems, 13(1), 72–88. https://doi.org/10.1504/IJIIDS.2020.108223
  • Cruz, A. E. C., & Ochimizu, K. (2009). Towards logistic regression models for predicting faultprone code across software projects. 2009 3rd international symposium on empirical software engineering and measurement. https://doi.org/10.1109/esem.2009.5316002
  • Devi, D., Biswas, S. K., & Purkayastha, B. (2019). Learning in presence of class imbalance and class overlapping by using one-class SVM and undersampling technique. Connection Science, 31(2), 105–142. https://doi.org/10.1080/09540091.2018.1560394
  • Ge, J., Chen, H., Zhang, D., Hou, X., & Yuan, L. (2020). Active learning for imbalanced ordinal regression. IEEE Access, 8, 180608–180617. https://doi.org/10.1109/ACCESS.2020.3027764
  • He, P., Li, B., Liu, X., Chen, J., & Ma, Y. (2015). An empirical study on software defect prediction with a simplified metric set. Information and Software Technology, 59, 170–190. https://doi.org/10.1016/j.infsof.2014.11.006
  • He, Z., Shu, F., Yang, Y., Li, M., & Wang, Q. (2012). An investigation on the feasibility of cross-project defect prediction. Automated Software Engineering, 19(2), 167–199. https://doi.org/10.1007/s10515-011-0090-3
  • Kim, Y. Y., Song, K., Jang, J., & Moon, I. C. (2020). LADA: Look-ahead data acquisition via augmentation for active learning. arXiv preprint arXiv:2011.04194.
  • Kitchenham, B. A., Mendes, E., & Travassos, G. H. (2007). Cross versus within-company cost estimation studies: A systematic review. IEEE Transactions on Software Engineering, 33(5), 316–329. https://doi.org/10.1109/TSE.2007.1001
  • Li, Y., Huang, Z., Wang, Y., & Fang, B. (2017). Evaluating data filter on cross-project defect prediction: Comparison and improvements. IEEE Access, 5, 25646–25656. https://doi.org/10.1109/ACCESS.2017.2771460
  • Li, Y., Wong, W. E., Lee, S. Y., & Wotawa, F. (2019). Using tri-relation networks for effective software fault-proneness prediction. IEEE Access, 7, 63066–63080. https://doi.org/10.1109/ACCESS.2019.2916615
  • Liu, W., Hu, E. W., Su, B., & Wang, J. (2021). Using machine learning techniques for DSP software performance prediction at source code level. Connection Science, 33(1), 26–41. https://doi.org/10.1080/09540091.2020.1762542
  • Lu, H., Kocaguneli, E., & Cukic, B. (2014). Defect prediction between software versions with active learning and dimensionality reduction. 2014 IEEE 25th international symposium on software reliability engineering. https://doi.org/10.1109/issre.2014.35
  • Menzies, T., Butcher, A., Cok, D., Marcus, A., Layman, L., Shull, F., Turhan, B., & Zimmermann, T. (2012). Local versus global lessons for defect prediction and effort estimation. IEEE Transactions on Software Engineering, 39(6), 822–834. https://doi.org/10.1109/TSE.2012.83
  • Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., & Bener, A. (2010). Defect prediction from static code features: Current results, limitations, new approaches. Automated Software Engineering, 17(4), 375–407. https://doi.org/10.1007/s10515-010-0069-5
  • Nam, J., Pan, S. J., & Kim, S. (2013). Transfer defect learning. 2013 35th international conference on software engineering (ICSE). https://doi.org/10.1109/icse.2013.6606584
  • Pelayo, L., & Dick, S. (2007). Applying novel resampling strategies to software defect prediction. NAFIPS 2007 - 2007 annual meeting of the North American fuzzy information processing society. https://doi.org/10.1109/nafips.2007.383813
  • Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data quality: Some comments on the NASA software defect datasets. IEEE Transactions on Software Engineering, 39(9), 1208–1215. https://doi.org/10.1109/TSE.2013.11
  • Too, J., & Rahim Abdullah, A. (2020). Binary atom search optimisation approaches for feature selection. Connection Science, 32(4), 406–430. https://doi.org/10.1080/09540091.2020.1741515
  • Turhan, B., Menzies, T., Bener, A. B., & Di Stefano, J. (2009). On the relative value of cross-company and within-company data for defect prediction. Empirical Software Engineering, 14(5), 540–578. https://doi.org/10.1007/s10664-008-9103-7
  • Turhan, B., Mısırlı, A. T., & Bener, A. (2013). Empirical evaluation of the effects of mixed project data on learning defect predictors. Information and Software Technology, 55(6), 1101–1118. https://doi.org/10.1016/j.infsof.2012.10.003
  • Wong, W. E., Debroy, V., Surampudi, A., Kim, H., & Siok, M. F. (2010). Recent catastrophic accidents: Investigating how software was responsible. 2010 fourth international conference on secure software integration and reliability improvement. https://doi.org/10.1109/ssiri.2010.38
  • Wong, W. E., Horgan, J. R., Syring, M., Zage, W., & Zage, D. (1998). Applying design metrics to a large-scale software system. Proceedings ninth international symposium on software reliability engineering (Cat. No.98TB100257). https://doi.org/10.1109/issre.1998.730891
  • Wong, W. E., Horgan, J. R., Syring, M., Zage, W., & Zage, D. (2000). Applying design metrics to predict fault-proneness: A case study on a large-scale software system. Software: Practice and Experience, 30(14), 1587–1608. https://doi.org/10.1002/1097-024X(20001125)30:14<1587::AID-SPE352>3.0.CO;2-1
  • Wong, W. E., Li, X., & Laplante, P. A. (2017). Be more familiar with our enemies and pave the way forward: A review of the roles bugs played in software failures. Journal of Systems and Software, 133, 68–94. https://doi.org/10.1016/j.jss.2017.06.069
  • Xu, F., Zhao, H., Zhou, W., & Zhou, Y. (2021). Cost-sensitive regression learning on small dataset through intra-cluster product favoured feature selection. Connection Science, 34(1), 104–123. https://doi.org/10.1080/09540091.2021.1970719
  • Xu, Z., Liu, J., Luo, X., & Zhang, T. (2018). Cross-version defect prediction via hybrid active learning with kernel principal component analysis. 2018 IEEE 25th international conference on software analysis, evolution and reengineering (SANER). https://doi.org/10.1109/saner.2018.8330210
  • Yuan, Z., Chen, X., Cui, Z., & Mu, Y. (2020). ALTRA: Cross-project software defect prediction via active learning and tradaboost. IEEE Access, 8, 30037–30049. https://doi.org/10.1109/ACCESS.2020.2972644
  • Zemmal, N., Azizi, N., Sellami, M., Cheriguene, S., & Ziani, A. (2021). A new hybrid system combining active learning and particle swarm optimisation for medical data classification. International Journal of Bio-Inspired Computation, 18(1), 59–68. https://doi.org/10.1504/IJBIC.2021.117427