1,796
Views
1
CrossRef citations to date
0
Altmetric
Articles

A novel anomaly detection method for multimodal WSN data flow via a dynamic graph neural network

, &
Pages 1609-1637 | Received 21 Feb 2022, Accepted 11 May 2022, Published online: 14 Jun 2022

References

  • Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158. https://doi.org/10.1016/j.eswa.2021.116158
  • Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-Qaness, M. A., & Gandomi, A. H. (2021). Aquila optimizer: A novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 157, 107250. https://doi.org/10.1016/j.cie.2021.107250
  • Ahmed, M., & Pathan, A. (2020). Deep learning for collective anomaly detection. International Journal of Computer Science and Engineering, 21(1), 137–145. https://doi.org/10.1504/IJCSE.2020.10026872
  • Audibert, J., Michiardi, P., Guyard, F., Marti, S., & Zuluaga, M. A. (2020, August). USAD: Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 3395–3404).
  • Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
  • Datar, M., Gionis, A., Indyk, P., & Motwani, R. (2002). Maintaining stream statistics over sliding windows. SIAM Journal on Computing, 31(6), 1794–1813. https://doi.org/10.1137/s0097539701398363
  • Deng, A., & Hooi, B. (2021). Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI Conference on Artificial Intelligence, 35(5), 4027–4035.
  • Ding, K., Li, J., Bhanushali, R., & Liu, H. (2019). Deep anomaly detection on attributed networks. Proceedings of the 2019 SIAM International Conference on Data Mining, 594–602. https://doi.org/10.1137/1.9781611975673.67
  • Fei, H., & Li, G. (2015). Abnormal data detection algorithm for WSN based on K-means clustering. Computer Engineering (Chinese), 41(07), 124–128. https://doi.org/10.3969/j.issn.1000-3428.2015.07.024
  • Fei, H., Xiao, F., Li, G., Sun, L., & Wang, R. (2017). An anomaly detection method of wireless sensor network based on multi-modals data stream. Chinese Journal of Computers, 40(8), 1829–1842. https://doi.org/10.11897/SP.J.1016.2017.01829
  • Fu, X., Wang, Y., Li, W., Yang, Y., & Postolache, O. (2021). Lightweight fault detection strategy for wireless sensor networks based on trend correlation. IEEE Access, 9, 9073–9083. https://doi.org/10.1109/ACCESS.2021.3049837
  • Guo, J., Li, R., Zhang, Y., & Wang, G. (2020). Graph neural network based anomaly detection in dynamic networks. Journal of Software (Chinese), 31(03), 748–762. https://doi.org/10.13328/j.cnki.jos.005903
  • Hamilton, W., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs. Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 1025–1035).
  • Hu, N., Zhang, D., Xie, K., Liang, W., & Hsieh, M. (2021). Graph learning-based spatial-temporal graph convolutional neural networks for traffic forecasting. Connection Science, 34(1), 429–448. https://doi.org/10.1080/09540091.2021.2006607.
  • Jiang, J., & Yang, J. (2018). Novel method for outlier nodes detection and localization in wireless sensor networks. Journal of Electronics & Information Technology (Chinese), 40(10), 2358–2364. https://doi.org/10.11999/JEIT171207
  • Jin, W., Tung, A. K. H., & Han, J. (2001). Mining top-n local outliers in large databases. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data mining - KDD ’01. https://doi.org/10.1145/502512.502554.
  • Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
  • Li, D., Chen, D., Jin, B., Shi, L., Goh, J., & Ng, S.-K. (2019). MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks. Artificial Neural Networks and Machine Learning - ICANN 2019: Text and Time Series, 703–716. https://doi.org/10.1007/978-3-030-30490-4_56.
  • Li, J., Zhao, B., Li, X., Liu, H., Liu, Y., & Zhou, J. (2020). Network traffic anomaly prediction method based on deep learning. Computer Engineering and Applications (Chinese), 56(06), 39–50. https://doi.org/10.3778/j.issn.1002-8331.1910-0243
  • Lin, C., Zheng, L., Zhang, W., & Deng, X. (2020). Abnormal node location algorithm for WSN based on random matrix theory. Computer Engineering(Chinese), 46(01), 157–163. https://doi.org/10.19678/j.issn.1000-3428.0054163
  • Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., & Karypis, G. (2021). Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Transactions on Neural Networks and Learning Systems, 1–15. https://doi.org/10.1109/tnnls.2021.3068344
  • Madden, S. (2004). Intel lab data. Intel Berkeley Research lab. http://db.csail.mit.edu/labdata/labdata.html
  • Park, D., Hoshi, Y., & Kemp, C. C. (2018). A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robotics and Automation Letters, 3(3), 1544–1551. https://doi.org/10.1109/lra.2018.2801475
  • Pavithra, D., & Rao, P. (2019). Dual sensor based wearable sensor fault detection for reliable medical monitoring. International Journal of Computer Science and Engineering, 7(6), 1100–1103. https://doi.org/10.26438/ijcse/v7i6.11001103
  • Pei, Y., Huang, T., van Ipenburg, W., & Pechenizkiy, M. (2022). ResGCN: Attention-based deep residual modeling for anomaly detection on attributed networks. Machine Learning, 111(2), 519–541. https://doi.org/10.1007/s10994-021-06044-0.
  • Peng, N., Zhang, W., Zhang, Y., Huang, C., & Zheng, L. (2018). Anomaly detection method for wireless sensor networks based On time series data. Journal of Transduction Technology (Chinese), 31(04), 595–601. https://doi.org/10.3969/j.issn.1004-1699.2018.04.017
  • Qi, Q., Shen, R., & Wang, J. (2020). GAD: Topology-aware time series anomaly detection. Journal on Communications (Chinese), 41(06), 152–160. https://doi.org/10.11959/j.issn.1000-436x.2020113
  • Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers from large data sets. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data - SIGMOD ‘00. https://doi.org/10.1145/342009.335437
  • Sun, L. (2015). Overview of the latest development of wireless sensor network application system. China New Telecommunications (Chinese), 17(06), 112–113.
  • Taheri, R., Javidan, R., Shojafar, M., Pooranian, Z., Miri, A., & Conti, M. (2020). On defending against label flipping attacks on malware detection systems. Neural Computing and Applications, 32(18), 14781–14800. https://doi.org/10.1007/s00521-020-0483
  • Taheri, R., Shojafar, M., Alazab, M., & Tafazolli, R. (2020). FED-IIoT: A robust federated malware detection architecture in industrial IoT. IEEE Transactions on Industrial Informatics, 17(12), 8442–8452. https://doi.org/10.1109/TII.2020.3043458
  • Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
  • Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. D. (2019). Deep graph infomax. International Conference on Learning Representations.
  • Wu, F.-J., Kao, Y.-F., & Tseng, Y.-C. (2011). From wireless sensor networks towards cyber physical systems. Pervasive and Mobile Computing, 7(4), 397–413. https://doi.org/10.1016/j.pmcj.2011.03.003
  • Wu, S., & Liu, Y. (2021). S_I_LSTM: Stock price prediction based on multiple data sources and sentiment analysis. Connection Science, 34(1), 44–62. https://doi.org/10.1080/09540091.2021.1940101
  • Wu, Z., Gao, Y., Li, L., Xue, J., & Li, Y. (2019). Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold. Connection Science, 31(2), 169–184. https://doi.org/10.1080/09540091.2018.1510902
  • Xie, L., Pi, D., Zhang, X., Chen, J., & Yu, W. (2021). Graph neural network approach for anomaly detection. Measurement, 180, 109546. https://doi.org/10.1016/j.measurement.2021.109546
  • Xu, Y., & Liu, F. (2017). Application of wireless sensor network in water quality monitoring. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). https://doi.org/10.1109/cse-euc.2017.254.
  • Xu, Z., & Zhang, W. (2020). Hand segmentation pipeline from depth map: An integrated approach of histogram threshold selection and shallow CNN classification. Connection Science, 32(2), 162–173. https://doi.org/10.1080/09540091.2019.1670621
  • Xue, X., Wu, X., Jiang, C., Mao, G., & Zhu, H. (2021). Integrating sensor ontologies with global and local alignment extractions. Wireless Communications and Mobile Computing, 2021, 1–10. https://doi.org/10.1155/2021/6625184
  • You, Z., Gan, X., Fu, L., & Wang, Z. (2020). GATAE: Graph attention-based anomaly detection on attributed networks. 2020 IEEE/CIC International Conference on Communications in China (ICCC). https://doi.org/10.1109/iccc49849.2020.9238879
  • Zhang, R., Li, W., & Mo, T. (2018). Review of deep learning. Information and Control (Chinese), 47(04), 385–397. https://doi.org/10.13976/j.cnki.xk.2018.8091
  • Zhao, H., Wang, Y., Duan, J., Huang, C., Cao, D., Tong, Y., Xu, B., Bai, J., Tong, J., & Zhang, Q. (2020). Multivariate time-series anomaly detection via graph attention network. 2020 IEEE International Conference on Data Mining (ICDM). https://doi.org/10.1109/icdm50108.2020.00093
  • Zhu, Y., Song, J., & Dong, F. (2011). Applications of wireless sensor network in the agriculture environment monitoring. Procedia Engineering, 16, 608–614. https://doi.org/10.1016/j.proeng.2011.08.1131