1,719
Views
5
CrossRef citations to date
0
Altmetric
Special Issue: Efficient Deep Neural Networks for Image Processing in End Side Devices

Image semantic segmentation with hierarchical feature fusion based on deep neural network

, ORCID Icon, &
Pages 1772-1784 | Received 14 Mar 2022, Accepted 21 May 2022, Published online: 14 Jun 2022

References

  • Boykov, Y. Y., & Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, IEEE, 1, 105–112. https://doi.org/10.1109/ICCV.2001.937505
  • Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2014). Semantic image segmentation with deep convolutional nets and fully connected crfs.” arXiv preprint arXiv:1412.7062.
  • Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017a). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848. https://doi.org/10.1109/TPAMI.2017.2699184
  • Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017b). Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.
  • Choy, S. K., Lam, S. Y., Yu, K. W., Lee, W. Y., & Leung, K. T. (2017). Fuzzy model-based clustering and its application in image segmentation. Pattern Recognition, 68, 141–157. https://doi.org/10.1016/j.patcog.2017.03.009
  • Coates, A., & Ng, A. Y. (2012). Learning feature representations with k-means. Neural Networks: Tricks of the Trade, 7700, 561–580. https://doi.org/10.1007/978-3-642-35289-8_30
  • Deng, X., & Ye, J. (2022). A retinal blood vessel segmentation based on improved D-MNet and pulse-coupled neural network. Biomedical Signal Processing and Control, 73, 103467. https://doi.org/10.1016/j.bspc.2021.103467
  • Du, X., Tang, S., Lu, Z., Wet, J., Gai, K., & Hung, P. C. K. (2020). A novel data placement strategy for data-sharing scientific workflows in heterogeneous edge-cloud computing environments. 2020 IEEE International Conference on Web Services (ICWS), 498–507. https://doi.org/10.1109/ICWS49710.2020.00073
  • Guo, C., Lin, Y., Chen, S., Zeng, Z., Shao, M., & Li, S. (2022). From the whole to detail: Progressively sampling discriminative parts for fine-grained recognition. Knowledge-Based Systems, 235, 107651. https://doi.org/10.1016/j.knosys.2021.107651
  • He, J., Deng, Z., & Qiao, Y. (2019). Dynamic multi-scale filters for semantic segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision, 3562–3572. https://doi.org/10.1109/ICCV.2019.00366
  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504–507. https://doi.org/10.1126/science.1127647
  • Hojjatoleslami, S., & Kittler, J. (1998). Region growing: A new approach. IEEE Transactions on Image Processing, 7(7), 1079–1084. https://doi.org/10.1109/83.701170
  • Ibrahim, R. W., Jalab, H. A., Karim, F. K., Alabdulkreem, E., & Ayub, M. N. (2022). A medical image enhancement based on generalized class of fractional partial differential equations. Quantitative Imaging in Medicine and Surgery, 12(1), 172–183. https://doi.org/10.21037/qims-21-15
  • Jinling, S., & Zhaohui, W. (2012). An image segmentation method based on graph cut and super pixels in nature scene. Journal of Soochow University (Natural Science Edition), 2, 108–132.
  • Lin, D., Ji, Y., Lischinski, D., Cohen-Or, D., & Huang, H. (2018). Multi-scale context intertwining for semantic segmentation. Proceedings of the European Conference on Computer Vision (ECCV), 603–619. https://doi.org/10.1007/978-3-030-01219-9_37
  • Lin, G., Milan, A., Shen, C., & Reid, I. (2017). Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1925–1934. https://doi.org/10.1109/CVPR.2017.549
  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965
  • Nahavandi, D., Alizadehsani, R., Khosravi, A., & Acharya, U. R. (2022). Application of artificial intelligence in wearable devices: Opportunities and challenges. Computer Methods and Programs in Biomedicine, 213, 106541. https://doi.org/10.1016/j.cmpb.2021.106541
  • Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision, 1520–1528. https://doi.org/10.1109/ICCV.2015.178
  • Park, T. J., Kanda, N., Dimitriadis, D., Han, K. J., Watanabe, S., & Narayanan, S. (2022). A review of speaker diarization: Recent advances with deep learning. Computer Speech & Language, 72, 101317. https://doi.org/10.1016/j.csl.2021.101317
  • Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). Cnn features off-the-shelf: An astounding baseline for recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 806–813. https://doi.org/10.1109/CVPRW.2014.131
  • Tian, Z., He, T., Shen, C., & Yan, Y. (2019). Decoders matter for semantic segmentation: Data-dependent decoding enables flexible feature aggregation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3126–3135. https://doi.org/10.1109/CVPR.2019.00324
  • Wang, C., Ning, X., Sun, L., Zhang, L., Li, W., & Bai, X.,et al. (2022). Learning Discriminative Features by Covering Local Geometric Space for Point Cloud Analysis. “ IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3170493
  • Wang, Y., Zhang, H., & Huang, H. (2019). A survey of image semantic segmentation algorithms based on deep learning. Application of Electronic Technique, 45(6), 23–27.
  • Xu, J., Du, X., Cai, W., Zhu, C., & Chen, Y. (2019). Meurep: A novel user reputation calculation approach in personalized cloud services. PLoS ONE, 14(6), e0217933. https://doi.org/10.1371/journal.pone.0217933
  • Yamini, B., & Sabitha, R. (2017). Image steganalysis: Adaptive color image segmentation using otsu’s method. Journal of Computational and Theoretical Nanoscience, 14(9), 4502–4507. https://doi.org/10.1166/jctn.2017.6767
  • Yang, H., Lijun, G., & Rong, Z. (2015). Integration of global and local correntropy image segmentation algorithm. Journal of Image and Graphics, 12(12), 1619–1628.
  • Ying-ming, H., & Feng, Z. (2005). Fast algorithm for two-dimensional Otsu adaptive threshold algorithm. Journal of Image and Graphics, 4, 484–485. http://dx.doi.org/10.1360/aas-007-0968
  • Zeng, N., Li, H., Wang, Z., Liu, W., Liu, S., Alsaadi, F. E., & Liu, X. (2021). Deep-reinforcement-learning-based images segmentation for quantitative analysis of gold immunochromatographic strip. Neurocomputing, 425, 173–180. https://doi.org/10.1016/j.neucom.2020.04.001
  • Zhai, S., Ren, C., Wang, Z., He, X., & Qing, L. (2022). An effective deep network using target vector update modules for image restoration. Pattern Recognition, 122, 108333. https://doi.org/10.1016/j.patcog.2021.108333
  • Zhang, Q., Wang, Z., Heidari, A. A., Gui, W., Shao, Q., Chen, H., Zaguia, A., Turabieh, H., & Chen, M. (2021). Gaussian Barebone Salp Swarm algorithm with stochastic fractal search for medical image segmentation: A COVID-19 case study. Computers in Biology and Medicine, 139, 104941. https://doi.org/10.1016/j.compbiomed.2021.104941
  • Zhou, T., Wu, W., Peng, L., Zhang, M., Li, Z., Xiong, Y., & Bai, Y. (2022). Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method. Reliability Engineering & System Safety, 217, 108090. https://doi.org/10.1016/j.ress.2021.108090
  • Zhu, H. (2022). Application research of image semantic segmentation algorithm based on deep learning. Electronic Components and Information Technology, https://doi.org/10.19772/j.cnki.2096-4455.2022.2.075