663
Views
1
CrossRef citations to date
0
Altmetric
Articles

Predicting algorithm of attC site based on combination optimization strategy

, , , , , , , , & show all
Pages 1895-1912 | Received 09 Feb 2022, Accepted 31 May 2022, Published online: 21 Jun 2022

References

  • Abdulkareem, N. M., & Abdulazeez, A. M. (2021). Machine learning classification based on Random forest algorithm: A review. International Journal of Science and Business, 5(2), 128–142. https://doi.org/10.5281/zenodo.4471118
  • Bessen, J. L., Afeyan, L. K., Dančík, V., Koblan, L. W., Thompson, D. B., Leichner, C., Clemon, P. A., & Liu, D. R. (2019). Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-018-07882-8
  • Bikard, D., Julié-Galau, S., Cambray, G., & Mazel, D. (2010). The synthetic integron: An in vivo genetic shuffling device. Nucleic Acids Research, 38(15), e153. https://doi.org/10.1093/nar/gkq511
  • Bouvier, M., Ducos-Galand, M., Loot, C., Bikard, D., & Mazel, D. (2009). Structural features of single-stranded integron cassette attC sites and their role in strand selection. PLoS Genetics, 5(9), e1000632. https://doi.org/10.1371/journal.pgen.1000632
  • Cao, Y., Geddes, T. A., Yang, J. Y. H., & Yang, P. (2020). Ensemble deep learning in bioinformatics. Nature Machine Intelligence, 2(9), 500–508. https://doi.org/10.1038/s42256-020-0217-y
  • Cao, Z., Zhou, Y., Yang, A., & Peng, S. (2021). Deep transfer learning mechanism for fine-grained cross-domain sentiment classification. Connection Science, 33(4), 911–928. https://doi.org/10.1080/09540091.2021.1912711
  • Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree Boosting system. Kdd ‘16: Proceedings of the 22nd ACM SIGKDD International conference on knowledge discovery and data mining, 785-794. https://doi.org/10.1145/2939672.2939785
  • Chen, Z., Wang, C., Jin, H., Li, J., Zhang, S., & Ouyang, Q. (2022). Hierarchical-fuzzy allocation and multi-parameter adjustment prediction for industrial loading optimisation. Connection Science, 34(1), 687–708. https://doi.org/10.1080/09540091.2022.2031887
  • Cury, J., Jové, T., Touchon, M., Néron, B., & Rocha, E. P. C. (2016). Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Research, 44(10), 4539–4550. https://doi.org/10.1093/nar/gkw319
  • Domingues, S., Silva1, G. J. d., & Nielsen, K. M. (2012). Integrons. Mobile Genetic Elements, 2(5), 211–223. https://doi.org/10.4161/mge.22967
  • Doudna, J. A. (2020). The promise and challenge of therapeutic genome editing. Nature, 578(7794), 229–236. https://doi.org/10.1038/s41586-020-1978-5
  • Epum, E. A., & Haber, J. E. (2022). Dna replication: The recombination connection. Trends in Cell Biology, 32(1), 45–57. https://doi.org/10.1016/j.tcb.2021.07.005
  • Frumerie, C., Ducos-Galand, M., Gopaul, D. N., & Mazel, D. (2010). The relaxed requirements of the integron cleavage site allow predictable changes in integron target specificity. Nucleic Acids Research, 38(2), 559–569. https://doi.org/10.1093/nar/gkp990
  • Ghaly, T. M., Tetu, S. G., & Gillings, M. R. (2021). Predicting the taxonomic and environmental sources of integron gene cassettes using structural and sequence homology of attC sites. Communications Biology, 4(1), 946–946. https://doi.org/10.1038/s42003-021-02489-0
  • Grieb, M. S., Nivina, A., Cheeseman, B. L., Hartmann, A., Mazel, D., & Schlierf, M. (2017). Dynamic stepwise opening of integron attC DNA hairpins by SSB prevents toxicity and ensures functionality. Nucleic Acids Research, 45(18), 10555–10563. https://doi.org/10.1093/nar/gkx670
  • Häcker, I., Harrell IIR. A., Eichner, G., Pilitt, K. L., O’Brochta, D. A., Handler, A. M., & Schetelig, M. F. (2017). Cre/lox-recombinase-mediated cassette exchange for reversible site-specific genomic targeting of the disease vector, aedes aegypti. Scientific Reports, 7(1), 43883. https://doi.org/10.1038/srep43883
  • Hoerl, A. E., & Kennard, R. W. (2000). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 42(1), 80–86. https://doi.org/10.1080/00401706.2000.10485983
  • Joss, M. J., Koenig, J. E., Labbate, M., Polz, M. F., Gillings, M. R., Stokes, H. W., Doolittle, W. F., & Boucher, Y. (2009). Acid: Annotation of cassette and integron data. BMC Bioinformatics, 10(1), 118. https://doi.org/10.1186/1471-2105-10-118
  • Klopfenstein, Q., & Vaiter, S. (2021). Linear support vector regression with linear constraints. Machine Learning, 110(7), 1939–1974. https://doi.org/10.1007/s10994-021-06018-2
  • Lacotte, Y., Ploy, M. C., & Raherison, S. (2017). Class 1 integrons are low-cost structures in escherichia coli. The ISME Journal, 11(7), 1535–1544. https://doi.org/10.1038/ismej.2017.38
  • Larouche, A., & Roy, P. H. (2011). Effect of attC structure on cassette excision by integron integrases. Mobile DNA, 2(1), 3. https://doi.org/10.1186/1759-8753-2-3
  • Lewis, R. J. (2000). An introduction to classification and regression tree (CART) analysis. San Francisco, CA: Annual meeting of the society for academic emergency medicine, 1-14. https://www.researchgate.net/publication/240719582
  • Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16(6), 321–332. https://doi.org/10.1038/nrg3920
  • Liu, G., Ma, J., Hu, T., & Gao, X. (2022). A feature selection method with feature ranking using genetic programming. Connection Science, 34(1), 1146–1168. https://doi.org/10.1080/09540091.2022.2049702
  • Liu, T., Yin, J., Gao, L., Chen, W., & Qiu, M. (2019). Consensus RNA secondary structure prediction using information of neighbouring columns and principal component analysis. International Journal of Computational Science and Engineering, 19(3), 430–439. https://doi.org/10.1504/IJCSE.2019.10022734
  • Liu, Z., Yang, Y., Li, D., Lv, X., Chen, X., & Dai, Q. (2022). Prediction of the RNA tertiary structure based on a Random sampling strategy and parallel mechanism. Frontiers in Genetics, 12, 813604. https://doi.org/10.3389/fgene.2021.813604
  • Liu, Z., Zhu, D., & Dai, Q. (2019). Improved predicting algorithm of RNA pseudoknotted structure. International Journal of Computational Science and Engineering, 19(1), 64–70. https://doi.org/10.1504/IJCSE.2019.099641
  • Mazel, D., Escudero, J. A., Nivina, A., & Loot, C. (2015). The integron: Adaptation On demand. Microbiology Spectrum, 3(2), MDNA3-0019-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0019-2014
  • Mukhortava, A., Pöge, M., Grieb, M. S., Nivina, A., Loot, C., Mazel, D., & Schlierf, M. (2019). Structural heterogeneity of attC integron recombination sites revealed by optical tweezers. Nucleic Acids Research, 47(4), 1861–1870. https://doi.org/10.1093/nar/gky1258
  • Nagra, A. A., Han, F., Ling, Q., Abubaker, M., Ahmad, F., Mehta, S., & Apasiba, A. T. (2019). Hybrid self-inertia weight adaptive particle swarm optimisation with local search using C4.5 decision tree classifier for feature selection problems. Connection Science, 32(1), 16–36. https://doi.org/10.1080/09540091.2019.1609419
  • Nivina, A., Escudero, J. A., Vit, C., Mazel, D., & Loot, C. (2016). Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites. Nucleic Acids Research, 44(16), 7792–7803. https://doi.org/10.1093/nar/gkw646
  • Nivina, A., Grieb, M. S., Loot, C., Bikard, D., Cury, J., Shehata, L., Bernardes, J., & Mazel, D. (2020). Structure-specific DNA recombination sites: Design, validation, and machine learning–based refinement. Science Advances, 6(30), eaay2922. https://doi.org/10.1126/sciadv.aay2922
  • Olorunniji, F. J., Rosser, S. J., & Stark, W. M. (2016). Site-specific recombinases: Molecular machines for the genetic revolution. Biochemical Journal, 473(6), 673–684. https://doi.org/10.1042/BJ20151112
  • Pellegrino, E., Jacques, C., Beaufils, N., Nanni, I., Carlioz, A., Metellus, P., & Ouafk, L. (2021). Machine learning random forest for predicting oncosomatic variant NGS analysis. Scientific Reports, 11(1), 21820. https://doi.org/10.1038/s41598-021-01253-y
  • Pereira, M. B., Wallroth, M., Kristiansson, E., & Axelson-Fisk, M. (2016). HattCI: Fast and accurate attC site identification using hidden Markov models. Journal of Computational Biology, 23(11), 891–902. https://doi.org/10.1089/cmb.2016.0024
  • Rowe-Magnus, D. A., Guerout, A. M., Biskri, L., Bouige, P., & Mazel, D. (2003). Comparative analysis of superintegrons: Engineering extensive genetic diversity in the vibrionaceae. Genome Research, 13(3), 428–442. https://doi.org/10.1101/gr.617103
  • Shah, D., & Zaveri, T. (2021). Hyperspectral endmember extraction using Pearson's correlation coefficient. International Journal of Computational Science and Engineering, 24(1), 89–97. https://doi.org/10.1504/IJCSE.2021.113656
  • Song, J., Liu, G., Jiang, J., Zhang, P., & Liang, Y. (2021). Prediction of protein–ATP binding residues based on ensemble of deep convolutional neural networks and LightGBM algorithm. International Journal of Molecular Sciences, 22(2), 939. https://doi.org/10.3390/ijms22020939
  • Stalder, T., Barraud, O., Casellas, M., Dagot, C., & Ploy, M. C. (2012). Integron involvement in environmental spread of antibiotic resistance. Frontiers in Microbiology, 3, 119. https://doi.org/10.3389/fmicb.2012.00119
  • Tian, X., & Zhou, B. (2021). Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution. Journal of Biological Chemistry, 296, 100509. https://doi.org/10.1016/j.jbc.2021.100509
  • Too, J., Ma, J., Sadiq, A. S., & Mirjalili, S. M. (2021). A conditional opposition-based particle swarm optimisation for feature selection. Connection Science, 34(1), 339–361. https://doi.org/10.1080/09540091.2021.2002266
  • Tsafnat, G., Coiera, E., Partridge, S. R., Schaeffer, J., & Iredell, J. R. (2009). Context-driven discovery of gene cassettes in mobile integrons using a computational grammar. BMC Bioinformatics, 10(1), 281. https://doi.org/10.1186/1471-2105-10-281
  • Vit, C., Loot, C., Escudero, J. A., Nivina, A., & Mazel, D. (2020). Methods in molecular biology. Methods in Molecular Biology, 2075, 189–208. https://doi.org/10.1007/978-1-4939-9877-7_14
  • Wang, C., Wang, Y., & Cheung, Y. (2021). A branch and bound irredundant graph algorithm for large-scale MLCS problems. Pattern Recognition, 119, 108059. https://doi.org/10.1016/j.patcog.2021.108059
  • Wei, S., Wang, Y., & Cheung, Y. (2021). A branch elimination-based efficient algorithm for large-scale multiple longest common subsequence problem. IEEE Transactions on Knowledge and Data Engineering, (1), 1. https://doi.org/10.1109/TKDE.2021.3115057
  • Weiss, E., Spicher, C., Haas, R., & Fischer, W. (2019). Excision and transfer of an integrating and conjugative element in a bacterial species with high recombination efficiency. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-45429-z
  • Wiedermann, W., & Hagmann, M. (2016). Asymmetric properties of the Pearson correlation coefficient: Correlation as the negative association between linear regression residuals. Communications in Statistics - Theory and Methods, 45(21), 6263–6283. https://doi.org/10.1080/03610926.2014.960582
  • Xu, F., Zhao, H., Zhou, W., & Zhou, Y. (2021). Cost-sensitive regression learning on small dataset through intra-cluster product favoured feature selection. Connection Science, 34(1), 104–123. https://doi.org/10.1080/09540091.2021.1970719
  • Zhang, F., Gao, D., & Xin, J. (2020). A decision tree algorithm for forest fire prediction based on wireless sensor networks. International Journal of Embedded Systems, 13(4), 422. https://doi.org/10.1504/IJES.2020.10031194
  • Zhu, H., Jiang, T., Wang, Y., Cheng, L., Ma, B., & Zhao, F. (2019). A data cleaning method for heterogeneous attribute fusion and record linkage. International Journal of Computational Science and Engineering, 19(3), 311–324. https://doi.org/10.1504/IJCSE.2019.10022717