706
Views
1
CrossRef citations to date
0
Altmetric
Articles

Multi-Semantic Alignment Graph Convolutional Network

ORCID Icon, , &
Pages 2313-2331 | Received 31 May 2022, Accepted 15 Aug 2022, Published online: 14 Sep 2022

References

  • Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. Advances in neural information processing systems (Vol. 29). Curran Associates, Inc.
  • Bian, T., Xiao, X., Xu, T., Zhao, P., Huang, W., Rong, Y., & Huang, J. (2020). Rumor detection on social media with bi-directional graph convolutional networks. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 01, pp. 549–556). https://doi.org/10.1609/aaai.v34i01.5393
  • Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203. https://doi.org/10.48550/arXiv.1312.6203
  • Chang, F., Ge, L., Li, S., Wu, K., & Wang, Y. (2021). Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction. Connection Science, 33(3), 427–446. https://doi.org/10.1080/09540091.2020.1841095
  • Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020). Simple and deep graph convolutional networks. In International Conference on Machine Learning (pp. 1725–1735). PMLR.
  • Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems (Vol. 29). Curran Associates, Inc.
  • Donnat, C., Zitnik, M., Hallac, D., & Leskovec, J. (2018). Learning structural node embeddings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1320–1329). Association for Computing Machinery. https://doi.org/10.1145/3219819.3220025.
  • Feng, F., He, X., Zhang, H., & Chua, T. S. (2021). Cross-GCN: Enhancing graph convolutional network with k-Order feature interactions. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2021.3077524
  • Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). CiteSeer: An automatic citation indexing system. In Proceedings of the third ACM conference on digital libraries (pp. 89–98). Association for Computing Machinery.
  • Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in neural information processing systems (Vol. 30). Curran Associates, Inc.
  • Hu, J., Wang, Z., Chen, J., & Dai, Y. (2021). A community partitioning algorithm based on network enhancement. Connection Science, 33(1), 42–61. https://doi.org/10.1080/09540091.2020.1753172
  • Hu, N., Zhang, D., Xie, K., Liang, W., & Hsieh, M. Y. (2021). Graph learning-based spatial-temporal graph convolutional neural networks for traffic forecasting. Connection Science, 34(1), 429–448. https://doi.org/10.1080/09540091.2021.2006607.
  • Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. https://doi.org/10.48550/arXiv.1609.02907
  • Klicpera, J., Bojchevski, A., & Günnemann, S. (2018). Predict then propagate: Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997. https://doi.org/10.48550/arXiv.1810.05997
  • Klicpera, J., Weißenberger, S., & Günnemann, S. (2019). Diffusion improves graph learning. arXiv preprint arXiv:1911.05485. https://doi.org/10.48550/arXiv.1911.05485
  • Li, G., Muller, M., Thabet, A., & Ghanem, B. (2019). Deepgcns: Can GCNs go as deep as CNNs ?. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9267–9276). IEEE.
  • Li, J. H., Huang, L., Wang, C. D., Huang, D., Lai, J. H., & Chen, P. (2021). Attributed network embedding with micro-meso structure. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(4), 1–26. https://doi.org/10.1145/3441486
  • Li, Q., Han, Z., & Wu, X. M. (2018). Deeper insights into graph convolutional networks for semi-supervised learning. In Thirty-second AAAI conference on artificial intelligence. AAAI press.
  • Li, Q., Wu, X. M., Liu, H., Zhang, X., & Guan, Z. (2019). Label efficient semi-supervised learning via graph filtering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 9582–9591). IEEE.
  • Lin, W., Gao, Z., & Li, B. (2020). Shoestring: Graph-based semi-supervised classification with severely limited labeled data. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4174–4182). IEEE.
  • Liu, M., Gao, H., & Ji, S. (2020). Towards deeper graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 338–348).  Association for Computing Machinery. https://doi.org/10.1145/3394486.3403076.
  • Liu, M., Wang, Z., & Ji, S. (2021). Non-local graph neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3134200
  • Liu, Z., Huang, C., Yu, Y., & Dong, J. (2021). Motif-preserving dynamic attributed network embedding. In Proceedings of the web conference 2021 (pp. 1629–1638).  Association for Computing Machinery. https://doi.org/10.1145/3442381.3449821.
  • McCallum, A. K., Nigam, K., Rennie, J., & Seymore, K. (2000). Automating the construction of internet portals with machine learning. Information Retrieval, 3(2), 127–163. https://doi.org/10.1023/A:1009953814988
  • Mishra, P., Del Tredici, M., Yannakoudakis, H., & Shutova, E. (2019). Abusive language detection with graph convolutional networks. arXiv preprint arXiv:1904.04073. https://doi.org/10.48550/arXiv.1904.04073
  • Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric deep learning on graphs and manifolds using mixture model CNNs. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5115–5124). IEEE.
  • Pan, G., Yao, Y., Tong, H., Xu, F., & Lu, J. (2021). Unsupervised attributed network embedding via cross fusion. . In Proceedings of the 14th ACM international conference on web search and data mining (pp. 797–805). Association for Computing Machinery. https://doi.org/10.1145/3437963.3441763.
  • Pei, H., Wei, B., Chang, K. C. C., Lei, Y., & Yang, B. (2020). Geom-GCN: Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287. https://doi.org/10.48550/arXiv.2002.05287
  • Qin, J., Zeng, X., Wu, S., & Tang, E. (2021). E-GCN: Graph convolution with estimated labels. Applied Intelligence, 51(7), 5007–5015. https://doi.org/10.1007/s10489-020-02093-5
  • Qin, J., Zeng, X., Wu, S., & Zou, Y. (2022). Feature recommendation strategy for graph convolutional network. Connection Science, 34(1), 1697–1718. https://doi.org/10.1080/09540091.2022.2080806
  • Rong, Y., Huang, W., Xu, T., & Huang, J. (2019). Dropedge: Towards deep graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903. https://doi.org/10.48550/arXiv.1907.10903
  • Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classification in network data. AI Magazine, 29(3), 93–93. https://doi.org/10.1609/aimag.v29i3.2157
  • Song, X., Li, J., Lei, Q., Zhao, W., Chen, Y., & Mian, A. (2022). Bi-CLKT: Bi-graph contrastive learning based knowledge tracing. Knowledge-Based Systems, 241(C), 108247–108247.
  • Song, X., Li, J., Tang, Y., Zhao, T., Chen, Y., & Guan, Z. (2021). Jkt: A joint graph convolutional network based deep knowledge tracing. Information Sciences, 580(C), 510–523. https://doi.org/10.1016/j.ins.2021.08.100.
  • Tan, Z., Yang, Y., Wan, J., Guo, G., & Li, S. Z. (2020). Relation-aware pedestrian attribute recognition with graph convolutional networks. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 07, pp. 12055–12062).  AAAI Press. https://doi.org/10.1609/aaai.v34i07.6883.
  • Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2579–2605.
  • Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903. https://doi.org/10.48550/arXiv.1710.10903
  • Wang, H., Lian, D., & Ge, Y. (2019). Binarized collaborative filtering with distilling graph convolutional networks. arXiv preprint arXiv:1906.01829. https://doi.org/10.48550/arXiv.1906.01829
  • Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019). Simplifying graph convolutional networks. In International conference on machine learning (pp. 6861–6871). PMLR.
  • Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K. I., & Jegelka, S. (2018). Representation learning on graphs with jumping knowledge networks. In International conference on machine learning (pp. 5453–5462). PMLR.
  • Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K. I., & Jegelka, S. (2019). What can neural networks reason about?. arXiv preprint arXiv:1905.13211. https://doi.org/10.48550/arXiv.1905.13211
  • Yang, L., Kang, Z., Cao, X., Jin, D., Yang, B., & Guo, Y. (2019). Topology optimization based graph convolutional network. In IJCAI (pp. 4054–4061). AAAI Press.
  • Yang, X., Deng, C., Dang, Z., Wei, K., & Yan, J. (2021). SelfSAGCN: Self-supervised semantic alignment for graph convolution network. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 16775–16784). IEEE.
  • Yang, Y., Guan, Z., Li, J., Zhao, W., Cui, J., & Wang, Q. (2021). Interpretable and efficient heterogeneous graph convolutional network. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2021.3101356
  • Zhao, C., Li, X., Shao, Z., Yang, H., & Wang, F. (2022). Multi-featured spatial-temporal and dynamic multi-graph convolutional network for metro passenger flow prediction. Connection Science, 34(1), 1252–1272. https://doi.org/10.1080/09540091.2022.2061915
  • Zhu, Q., Du, B., & Yan, P. (2020). Self-supervised training of graph convolutional networks. arXiv preprint arXiv:2006.02380. https://doi.org/10.48550/arXiv.2006.02380