1,770
Views
1
CrossRef citations to date
0
Altmetric
Recent Advances in Parallel and Distributed Computing and Applications

Energy-efficient control of thermal comfort in multi-zone residential HVAC via reinforcement learning

, , , , &
Pages 2364-2394 | Received 11 Apr 2022, Accepted 20 Aug 2022, Published online: 14 Sep 2022

References

  • Ahn, K. U., & Park, C. S. (2019). Application of deep Q-networks for model-free optimal control balancing between different HVAC systems. Science and Technology for the Built Environment, 26(1), 1–16. https://doi.org/10.1080/23744731.2019.1680234
  • Baldi, S., Korkas, C. D., Lv, M., & Kosmatopoulos, E. B. (2018). Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach. Applied Energy, 231, 1246–1258. https://doi.org/10.1016/j.apenergy.2018.09.188
  • Brandi, S., Piscitelli, M. S., Martellacci, M., & Capozzoli, A. (2020). Deep reinforcement learning to optimise indoor temperature control and heating energy consumption in buildings. Energy and Buildings, 224, Article ID 110225. https://doi.org/10.1016/j.enbuild.2020.110225
  • Bureau, C. M. (2005). China standard weather data for analyzing building thermal conditions (pp. 90–105). China Building Industry Publishing House.
  • Chen, Z., Wang, C., Jin, H., Li, J., Zhang, S., & Ouyang, Q. (2022). Hierarchical-fuzzy allocation and multi-parameter adjustment prediction for industrial loading optimisation. Connection Science, 34(1), 687–708. https://doi.org/10.1080/09540091.2022.2031887
  • Cicirelli, F., Guerrieri, A., Mastroianni, C., Scarcello, L., Spezzano, G., & Vinci, A. (2021). Balancing energy consumption and thermal comfort with deep reinforcement learning. In 2021 IEEE 2nd international conference on human-machine systems (ICHMS) (pp. 1–6). IEEE.
  • Costa, A., Keane, M. M., Torrens, J. I., & Corry, E. (2013). Building operation and energy performance: Monitoring, analysis and optimisation toolkit. Applied Energy, 101(JAN), 310–316. https://doi.org/10.1016/j.apenergy.2011.10.037
  • Deng, J., Yao, R., Yu, W., Zhang, Q., & Li, B. (2019). Effectiveness of the thermal mass of external walls on residential buildings for part-time part-space heating and cooling using the state-space method. Energy and Buildings, 190, 155–171. https://doi.org/10.1016/j.enbuild.2019.02.029
  • Du, Y., Zandi, H., Kotevska, O., Kurte, K., Munk, J., Amasyali, K., Mckee, E., & Li, F. (2021). Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning. Applied Energy, 281, Article ID 116117. https://doi.org/10.1016/j.apenergy.2020.116117
  • Fatema, I., Kong, X., & Fang, G. (2021). Electricity demand and price forecasting model for sustainable smart grid using comprehensive long short term memory. International Journal of Sustainable Engineering, 14(6), 1714–1732. https://doi.org/10.1080/19397038.2021.1951882
  • Fu, Q., Chen, X., Ma, S., Fang, N., Xing, B., & Chen, J. (2022). Optimal control method of HVAC based on multi-agent deep reinforcement learning. Energy and Buildings, 270, Article ID 112284. https://doi.org/10.1016/j.enbuild.2022.112284
  • Fldvry Liina, V., Cheung, T., Zhang, H., de Dear, R., Parkinson, T., Arens, E., Chun, C., Schiavon, S., Luo, M., Brager, G., & Li, P. (2018). Development of the ASHRAE global thermal comfort database II. Building and Environment, 142, 502–512. https://doi.org/10.1016/j.buildenv.2018.06.022
  • Han, X., He, H., Wu, J., Peng, J., & Li, Y. (2019). Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle. Applied Energy, 254, Article ID 113708. https://doi.org/10.1016/j.apenergy.2019.113708
  • Jiang, Z., Risbeck, M. J., Ramamurti, V., Murugesan, S., Amores, J., Zhang, C., Lee, Y. M., & Drees, K. H. (2021). Building HVAC control with reinforcement learning for reduction of energy cost and demand charge. Energy and Buildings, 239, Article ID 110833. https://doi.org/10.1016/j.enbuild.2021.110833
  • Kheyrinataj, F., & Nazemi, A. (2020). Fractional power series neural network for solving delay fractional optimal control problems. Connection Science, 32(1), 53–80. https://doi.org/10.1080/09540091.2019.1605498
  • Korkas, C. D., Baldi, S., & Kosmatopoulos, E. B. (2018). 9-grid-connected microgrids: Demand management via distributed control and human-in-the-loop optimization. In I. Yahyaoui (Ed.), Advances in renewable energies and power technologies (pp. 315–344). Elsevier. https://doi.org/10.1016/B978-0-12-813185-5.00025-5
  • Korkas, C. D., Baldi, S., Michailidis, I., & Kosmatopoulos, E. B. (2015). Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule. Applied Energy, 149(C), 194–203. https://doi.org/10.1016/j.apenergy.2015.01.145
  • Kurte, K., Munk, J., Amasyali, K., Kotevska, O., Cui, B., Kuruganti, T., & Zandi, H. (2020). Electricity pricing aware deep reinforcement learning based intelligent HVAC control. In Proceedings of the 1st international workshop on reinforcement learning for energy management in buildings & cities (pp. 6–10). Association for Computing Machinery. https://doi.org/10.1145/3427773.3427866.
  • Kurte, K., Munk, J., Kotevska, O., Amasyali, K., Smith, R., McKee, E., Du, Y., Cui, B., Kuruganti, T., & Zandi, H. (2020). Evaluating the adaptability of reinforcement learning based HVAC control for residential houses. Sustainability, 12(18), Article ID 7727. https://doi.org/10.3390/su12187727
  • Kurte, K. R., Amasyali, K., Munk, J. D., & Zandi, H. (2021). Comparative analysis of model-free and model-based HVAC control for residential demand response. In Proceedings of the 8th ACM international conference on systems for energy-efficient buildings, cities, and transportation.
  • Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement learning. Computer Science. arXiv preprint arXiv:1509.02971
  • Liu, W., Lian, Z., & Zhao, B. (2007). A neural network evaluation model for individual thermal comfort. Energy and Buildings, 39(10), 1115–1122. https://doi.org/10.1016/j.enbuild.2006.12.005
  • McKee, E., Du, Y., Li, F., Munk, J., Johnston, T., Kurte, K., Kotevska, O., Amasyali, K., & Zandi, H. (2020). Deep reinforcement learning for residential HVAC control with consideration of human occupancy. In 2020 IEEE power & energy society general meeting (PESGM) (pp. 1–5).
  • Montague, P. (1999). Reinforcement learning: An introduction, by Sutton, R.S. and Barto, A.G.. Trends in Cognitive Sciences, 3(9), 360. https://doi.org/10.1016/S1364-6613(99)01331-5
  • Moreno, B., Gonzalo, F., & Hernandez, J. A. (2017). Designing a wireless sensor with ultra-capacitor and PV microcell for smart building energy management. International Journal of Embedded Systems, 11(1), 1. https://doi.org/10.1504/IJES.2019.097565
  • Nazemi, A., Fayyazi, E., & Mortezaee, M. (2019). Solving optimal control problems of the time-delayed systems by a neural network framework. Connection Science, 31(4), 342–372. https://doi.org/10.1080/09540091.2019.1604627
  • Prez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394–398. https://doi.org/10.1016/j.enbuild.2007.03.007
  • Qiu, S., Li, Z., Li, Z., Li, J., Long, S., & Li, X. (2020). Model-free control method based on reinforcement learning for building cooling water systems: Validation by measured data-based simulation. Energy and Buildings, 218, Article ID 110055. https://doi.org/10.1016/j.enbuild.2020.110055
  • Qiu, S., Li, Z., Li, Z., & Zhang, X. (2020). Model-free optimal chiller loading method based on Q-learning. Science and Technology for the Built Environment, 26(8), 1100–1116. https://doi.org/10.1080/23744731.2020.1757328
  • Rocchetta, R., Bellani, L., Compare, M., Zio, E., & Patelli, E. (2019). A reinforcement learning framework for optimal operation and maintenance of power grids. Applied Energy, 241, 291–301. https://doi.org/10.1016/j.apenergy.2019.03.027
  • Sang, J., & Sun, H. (2021). HVAC cooling–heating-power demand strategy optimization based on DDPG control. In 2021 IEEE international conference on advances in electrical engineering and computer applications (AEECA) (pp. 266–270).
  • Shaw, E. W. (1972). Thermal comfort: Analysis and applications in environmental engineering, by P. O. Fanger. 244 pp. Danish Technical Press. Copenhagen, Denmark, 1970. Danish Kr. 76, 50. The Journal of the Royal Society for the Promotion of Health.
  • Silver, D., Lever, G., Heess, N., Degris, T., & Riedmiller, M. (2014). Deterministic policy gradient algorithms. JMLR.org.
  • Sutton, R. S., Mcallester, D., Singh, S., & Mansour, Y. (1999). Policy gradient methods for reinforcement learning with function approximation. Submitted to Advances in Neural Information Processing Systems, 12, 1057–1063. https://doi.org/10.5555/3009657.3009806.
  • Volodymyr, M., Koray, K., David, S., Rusu, A. A., Joel, V., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., & Petersen, S. (2019). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–33. https://doi.org/10.1038/nature14236
  • Watari, D., Taniguchi, I., Catthoor, F., Marantos, C., Siozios, K., Shirazi, E., Soudris, D., & Onoye, T. (2021). Thermal comfort aware online energy management framework for a smart residential building. In 2021 design, automation & test in Europe conference & exhibition (date) (pp. 535–538).
  • Wei, T., Ren, S., & Zhu, Q. (2021). Deep reinforcement learning for joint datacenter and HVAC load control in distributed mixed-use buildings. IEEE Transactions on Sustainable Computing, 6(3), 370–384. https://doi.org/10.1109/TSUSC.2019.2910533
  • Wu, X., He, J., Xu, Y., Lu, J., Lu, N., & Wang, X. (2018). Hierarchical control of residential HVAC units for primary frequency regulation. IEEE Transactions on Smart Grid, 9(4), 3844–3856. https://doi.org/10.1109/TSG.2017.2766880
  • Yu, L., Sun, Y., Xu, Z., Shen, C., Yue, D., Jiang, T., & Guan, X. (2021). Multi-agent deep reinforcement learning for HVAC control in commercial buildings. IEEE Transactions on Smart Grid, 12(1), 407–419. https://doi.org/10.1109/TSG.5165411
  • Yu, L., Xie, W., Xie, D., Zou, Y., & Jiang, T. (2019). Deep reinforcement learning for smart home energy management. IEEE Internet of Things Journal, PP(99), 1–1. https://doi.org/10.1109/JIOT.2019.2957289
  • Zeng, T., & Barooah, P. (2020). An autonomous MPC scheme for energy-efficient control of building HVAC systems. In 2020 American control conference (ACC) (pp. 4213–4218).
  • Zeng, T., & Barooah, P. (2021). An adaptive MPC scheme for energy-efficient control of building HVAC systems, arXiv abs/2102.03856.
  • Zenger, A., Schmidt, J., & Krdel, M. (2013). Towards the intelligent home: Using reinforcement-learning for optimal heating control. Springer.
  • Zhou, X., Xu, L., Zhang, J., Niu, B., Luo, M., Zhou, G., & Zhang, X. (2020). Data-driven thermal comfort model via support vector machine algorithms: Insights from ASHRAE RP-884 database. Energy and Buildings, 211, Article ID 109795. https://doi.org/10.1016/j.enbuild.2020.109795
  • Zhou, X., Zhu, F., & Zhao, P. (2022). Predicting before acting: Improving policy quality by taking a vision of consequence. Connection Science, 34(1), 608–629. https://doi.org/10.1080/09540091.2022.2025765