2,046
Views
0
CrossRef citations to date
0
Altmetric
Articles

Deep and hybrid learning of MRI diagnosis for early detection of the progression stages in Alzheimer’s disease

Pages 2395-2430 | Received 04 Apr 2022, Accepted 06 Sep 2022, Published online: 15 Sep 2022

References

  • Abunadi, I, Albraikan, A. A., Alzahrani, J. S., & Eltahir, M. M., & Healthcare, and undefined 2022. (2022). An automated glowworm swarm optimization with an inception-based deep convolutional neural network for COVID-19 diagnosis and classification. Mdpi.Com. https://www.mdpi.com/1579912
  • Abunadi, I., & Senan, E. M. (2021). Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases. Electronics 2021, 10(24), 3158. Multidisciplinary Digital Publishing Institute: 3158. doi:10.3390/ELECTRONICS10243158
  • Ahmed, I. A., Senan, E. M., Rassem, T. H., Ali, M. A. H., Ahmad Shatnawi, H. S., Alwazer, S. M., & Alshahrani, M. (2022). Eye tracking-based diagnosis and early detection of autism spectrum disorder using machine learning and deep learning techniques. Electronics 2022, 11(4), 530. Multidisciplinary Digital Publishing Institute: 530. doi:10.3390/ELECTRONICS11040530.
  • Ahmed, O. b., Mizotin, M., Benois-Pineau, J., Allard, M., Catheline, G., Amar, B., & Allard, M. (2015). Alzheimer’s disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex. Computerized Medical Imaging and Graphics, 44, 13–25. doi:10.1016/j.compmedimag.2015.04.007
  • Al-Khuzaie, F. E. K., Bayat, O., & Duru, A. D. (2021). Diagnosis of Alzheimer disease using 2D MRI slices by convolutional neural network. Applied Bionics and Biomechanics, 2021. Hindawi Limited. doi:10.1155/2021/6690539.
  • Al-Mekhlafi, Z. G., Senan, E. M., & Computers, and undefined 2022. (2022). Deep learning and machine learning for early detection of stroke and haemorrhage. Eprints.Bournemouth.Ac.Uk. http://eprints.bournemouth.ac.uk/36721/
  • Altinkaya, E., Polat, K., Barakli, B., & Journal of the Institute of Electronics, and undefined 2020. (2019). Detection of Alzheimer’s disease and dementia states based on deep learning from MRI images: A comprehensive review. Iecscience.Org, 1, 39–53. doi:10.33969/JIEC.2019.11005.
  • “Alzheimer’s Dataset (4 Class of Images) | Kaggle”. 2022. https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
  • Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., & Journal of neuroscience, and undefined 2018. (2022). Deep learning reveals alzheimer’s disease onset in MCI subjects: Results from an international challenge. Elsevier. https://www.sciencedirect.com/science/article/pii/S0165027017304296
  • Ballarini, T., van Lent, D. M., Brunner, J., Schröder, A., Wolfsgruber, S., Altenstein, S., Brosseron, F., et al. (2021). Mediterranean diet, Alzheimer disease biomarkers, and brain atrophy in old age. Neurology, 96(24), e2920–e2932. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. doi:10.1212/WNL.0000000000012067
  • Bernal-Rusiel, J. L., Reuter, M., Greve, D. N., Fischl, B., & Neuroimage, and undefined 2013. (2022). Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data. Elsevier. https://www.sciencedirect.com/science/article/pii/S1053811913005430
  • Budak, Ü., Cömert, Z., Rashid, Z. N., Şengür, A., & Applied Soft Computing, and undefined 2019. (2022). Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images. Elsevier. https://www.sciencedirect.com/science/article/pii/S1568494619305460
  • Cai, S., Han, D., Yin, X., Li, D., & Chang, C. C. (2022). A hybrid parallel deep learning model for efficient intrusion detection based on metric learning. Taylor & Francis 34(1), 551–577. doi:10.1080/09540091.2021.2024509.
  • Dai, Y., & Wang, T. (2021). Prediction of customer engagement behaviour response to marketing posts based on machine learning. Taylor & Francis 33(4), 891–910. doi:10.1080/09540091.2021.1912710.
  • D’Angelo, G., Palmieri, F., Robustelli, A., & Castiglione, A. (2021). Effective classification of android malware families through dynamic features and neural networks. Taylor & Francis: 33(3), 786–801. doi:10.1080/09540091.2021.1889977.
  • Duc, N. T., Ryu, S., Qureshi, M. N. I., Choi, M., Lee, K. H., & Lee, B. (2020). 3D-Deep learning based automatic diagnosis of Alzheimer’s disease with joint MMSE prediction using resting-state FMRI. Neuroinformatics, Springer: 18(1), 71–86. doi:10.1007/s12021-019-09419-w
  • Ebrahimi-Ghahnavieh, A, Luo, S., & 2019 IEEE International, and undefined 2019. (2022). Transfer learning for Alzheimer’s disease detection on MRI images. Ieeexplore.Ieee.Org. https://ieeexplore.ieee.org/abstract/document/8784845/
  • Elhoseny, M., Shankar, K., Uthayakumar, J., & Scientific reports, and undefined 2019. (2022). Intelligent diagnostic prediction and classification system for chronic kidney disease. Nature.Com. https://www.nature.com/articles/s41598-019-46074-2
  • El-Sappagh, S., Abuhmed, T., Riazul Islam, S. M., & Kwak, K. S. (2020). Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data. Neurocomputing, 412(October) Elsevier, 197–215. doi:10.1016/j.neucom.2020.05.087
  • Fan, Z., Xu, F., Qi, X., Li, C., & Yao, L. (2020). Classification of Alzheimer’s disease based on brain MRI and machine learning. Neural Computing and Applications, 32(7) Springer, 1927–1936. doi:10.1007/s00521-019-04495-0
  • Fuse, H., Oishi, K., Maikusa, N., Fukami, T., & 2018 Joint 10th, and undefined 2018. (2022). Detection of Alzheimer’s disease with shape analysis of MRI images. Ieeexplore.Ieee.Org. https://ieeexplore.ieee.org/abstract/document/8716217/
  • Hu, N., Zhang, D., Xie, K., Liang, W., & Hsieh, M. Y. (2021). Graph learning-based spatial-temporal graph convolutional neural networks for traffic forecasting. Taylor & Francis 34(1), 429–448. doi:10.1080/09540091.2021.2006607.
  • Huang, H., Zheng, S., Yang, Z., Wu, Y., Li, Y., Qiu, J., Cheng, Y., Lin, P., Lin, Y., Guan, J., Mikulis, D. J., Zhou, T., & Wu, R. (2022). Voxel-based morphometry and a deep learning model for the diagnosis of early Alzheimer’s disease based on cerebral gray matter changes. Cerebral Cortex. doi:10.1093/CERCOR/BHAC099.
  • International, Alzheimer’s Disease, and Christina Patterson. (2018). World Alzheimer report 2018: The state of the art of dementia research: New frontiers. https://www.alzint.org/resource/world-alzheimer-report-2018/
  • Islam, J., Zhang, Y., & Proceedings of the IEEE conference on, and undefined 2018. (2022). Early diagnosis of Alzheimer’s disease: A neuroimaging study with deep learning architectures. Openaccess.Thecvf.Com. https://openaccess.thecvf.com/content_cvpr_2018_workshops/w36/html/Islam_Early_Diagnosis_of_CVPR_2018_paper.html
  • Ithapu, V., Singh, V., Lindner, C., Austin, B. P., Hinrichs, C., Carlsson, C. M., Bendlin, B. B., & Johnson, S. C. (2014). Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer’s disease risk and aging studies. Human Brain Mapping, 35(8), John Wiley & Sons, Ltd 4219–4235. doi:10.1002/hbm.22472
  • Janelidze, S., Mattsson, N., Palmqvist, S., Smith, R., & Nature medicine, and undefined 2020. (2022). Plasma P-Tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s Dementia. Nature.Com. https://www.nature.com/articles/s41591-020-0755-1
  • Johnson, K. A., Fox, N. C., Sperling, R. A., & Klunk, W. E. (2012). Brain imaging in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(4), A006213. Cold Spring Harbor Laboratory Press. doi:10.1101/cshperspect.a006213
  • Karim, R., Shahrior, A., & Rahman, M. M. (2021). Machine learning-based Tri-stage classification of Alzheimer’s progressive neurodegenerative disease using PCA and MRMR administered textural, orientational, and spatial features. International Journal of Imaging Systems and Technology, 31(4), John Wiley & Sons, Ltd: 2060–2074. doi:10.1002/ima.22622
  • Lazli, L., Boukadoum, M., & Mohamed, O. A. (2020). A survey on computer-aided diagnosis of brain disorders through MRI based on machine learning and data mining methodologies with an emphasis on Alzheimer disease diagnosis and the contribution of the multimodal fusion. Applied Sciences 2020, 10(5), 1894. Multidisciplinary Digital Publishing Institute: 1894. doi:10.3390/APP10051894.
  • Lella, E., Lombardi, A., Amoroso, N., Diacono, D., Maggipinto, T., Monaco, A., Bellotti, R., and Tangaro, S. (2022). Machine learning and DWI brain communicability networks for Alzheimer’s disease detection. Mdpi.Com doi:10.3390/app10030934.
  • Liu, G., Ma, J., Hu, T., & Gao, X. (2022). A feature selection method with feature ranking using genetic programming. Taylor & Francis 34(1), 1146–1168. doi:10.1080/09540091.2022.2049702.
  • Maqsood, M., Nazir, F., Khan, U., Aadil, F., Jamal, H., Mehmood, I., & Song, O. Y. (2019). Transfer learning assisted classification and detection of Alzheimer’s disease stages using 3D MRI scans. Sensors 2019, 19(11), 2645. Multidisciplinary Digital Publishing Institute: 2645. doi:10.3390/S19112645.
  • Meghdadi, A. H., Karic, M. S., McConnell, M., Rupp, G., Richard, C., Hamilton, J., Salat, D., & Berka, C. (2021). Resting state EEG biomarkers of cognitive decline associated with Alzheimer’s disease and mild cognitive impairment. PLOS ONE, Public Library of Science 16(2), e0244180. doi:10.1371/journal.pone.0244180
  • Mohammed, B. A., Senan, E. M., Rassem, T. H., Makbol, N. M., Alanazi, A. A., Al-Mekhlafi, Z. G., Almurayziq, T. S., & Ghaleb, F. A. (2021a). Multi-Method analysis of medical records and MRI images for early diagnosis of dementia and Alzheimer’s disease based on deep learning and hybrid methods. Electronics 2021, 10(22), 2860. Multidisciplinary Digital Publishing Institute: 2860. doi:10.3390/ELECTRONICS10222860.
  • Mohammed, B. A., Senan, E. M., Rassem, T. H., Makbol, N. M., Alanazi, A. A., Al-Mekhlafi, Z. G., Almurayziq, T. S., & Ghaleb, F. A. (2021b). Multi-Method analysis of medical records and MRI images for early diagnosis of dementia and Alzheimer’s disease based on deep learning and hybrid methods. Electronics 2021, 10(22), 2860. Multidisciplinary Digital Publishing Institute: 2860. doi:10.3390/ELECTRONICS10222860.
  • Morabito, F. C., Campolo, M., Mammone, N., Versaci, M., Franceschetti, S., Tagliavini, F., Sofia, V., Fatuzzo, D., Gambardella, A., Labate, A., Mumoli, L., Tripodi, G. G., Gasparini, S., Cianci, V., Sueri, C., Ferlazzo, E., & Aguglia, U. (2017). Deep learning representation from electroencephalography of early-stage Creutzfeldt-Jakob disease and features for differentiation from rapidly progressive dementia. International Journal of Neural Systems, 27(2), 1650039. World Scientific Publishing Co. Pte Ltd. doi:10.1142/S0129065716500398
  • Munadhil, Z., Gharghan, S. K., Mutlag, A. H., Al-Naji, A., & Chahl, J. (2020). Neural network-based Alzheimer’s patient localization for wireless sensor network in an indoor environment. IEEE Access, 8, Institute of Electrical and Electronics Engineers Inc.: 150527–150538. doi:10.1109/ACCESS.2020.3016832
  • Nadel, J., Mcnally, J. S., Digiorgio, A., Grandhi, R., & Gatto, G. (2021). Emerging utility of applied magnetic resonance imaging in the management of traumatic brain injury. Medical Sciences 2021, 9(1), 10. Multidisciplinary Digital Publishing Institute: 10. doi:10.3390/MEDSCI9010010.
  • Pinaya, W. H. L., Scarpazza, C., Garcia-Dias, R., Vieira, S., & Scientific reports, and undefined 2021. (2022). Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross-sectional multi-cohort study. Nature.Com. https://www.nature.com/articles/s41598-021-95098-0
  • Porsteinsson, A. P., Isaacson, R. S., Knox, S., Sabbagh, M. N., & Rubino, I. (2021). Diagnosis of early Alzheimer’s disease: Clinical practice in 2021. Journal of Prevention of Alzheimer’s Disease, 8(3), Serdi-Editions 371–386. doi:10.14283/JPAD.2021.23/TABLES/5
  • Qin, M. (2022). Application of efficient recognition algorithm based on deep neural network in English teaching scene. Taylor & Francis, 34(1), 1913–1928. doi:10.1080/09540091.2022.2088699.
  • Raghavaiah, P., & Varadarajan, S. (2022). A CAD system design for Alzheimer’s disease diagnosis using temporally consistent clustering and hybrid deep learning models. Biomedical Signal Processing and Control, 75(May), Elsevier: 103571. doi:10.1016/j.bspc.2022.103571
  • Reuter, M., Schmansky, N. J., Rosas, H. D., Fischl, B., & Neuroimage, and undefined 2012. (2022). Within-subject template estimation for unbiased longitudinal image analysis. Elsevier. https://www.sciencedirect.com/science/article/pii/S1053811912002765
  • Salehi, A. W., Baglat, P., Gupta, G., & Int. J. Eng. Adv. Technol, and undefined 2020. (2022). Alzheimer’s disease diagnosis using deep learning techniques. Researchgate.Net. https://www.researchgate.net/profile/Waleed-Salehi/publication/341152313_Alzheimer’s_Disease_Diagnosis_using_Deep_Learning_Techniques/links/5f44e2e3299bf13404f1c051/Alzheimers-Disease-Diagnosis-using-Deep-Learning-Techniques.pdf
  • Senan, E. M., Abunadi, I., Jadhav, M. E., & Fati, S. M. (2021). Score and correlation coefficient-based feature selection for predicting heart failure diagnosis by using machine learning algorithms. Computational and Mathematical Methods in Medicine, 2021(December), Hindawi. doi:10.1155/2021/8500314.
  • Senan, E. M., & Jadhav, M. E. (2021). Communications in computer and information science. Communications in Computer and Information Science, 1381, CCIS. Springer Science and Business Media Deutschland GmbH: 14–25. doi:10.1007/978-981-16-0493-5_2
  • Senan, E. M., & Jadhav, M. E. (2022). Advances in intelligent systems and computing. 125–134. doi:10.1007/978-981-16-4538-9_13.
  • Senan, E. M., Jadhav, M. E., Kadam, A., & 2021 6th International, and undefined 2021. (2022). Classification of PH2 images for early detection of skin diseases. Ieeexplore.Ieee.Org. https://ieeexplore.ieee.org/abstract/document/9417893/
  • Shaikh, T. A., Ali, R., & Magnetic resonance imaging, and undefined 2019. (2022). Automated atrophy assessment for Alzheimer’s disease diagnosis from brain MRI images. Elsevier. https://www.sciencedirect.com/science/article/pii/S0730725X1930102X
  • Soldan, A., Gazes, Y., & Stern, Y. (2017). Alzheimer’s disease. The Curated Reference Collection in Neuroscience and Biobehavioral Psychology, January. Elsevier, 108–115. doi:10.1016/B978-0-12-809324-5.06319-7.
  • Song, E., & Li, H. (2021). A hybrid differential evolution for multi-objective optimisation problems. Taylor & Francis, 34(1), 224–253. doi:10.1080/09540091.2021.1984396.
  • Song, M., Jung, H., Lee, S., Kim, D., & Ahn, M. (2021). Diagnostic classification and biomarker identification of Alzheimer’s disease with random forest algorithm. Brain Sciences, 11(4), 453. Multidisciplinary Digital Publishing Institute: 453. doi:10.3390/brainsci11040453
  • Sun, X., Wang, Q., Zhang, X., Xu, C., & Zhang, W. (2021). Deep blur detection network with boundary-aware multi-scale features. Taylor & Francis, 34(1), 766–784. doi:10.1080/09540091.2021.1933906.
  • Swain, B. K., Sahani, M., & Sharma, R. (2020). Lecture notes in electrical engineering. Lecture Notes in Electrical Engineering, 630, Springer, Singapore: 531–542. doi:10.1007/978-981-15-2305-2_43
  • Tabatabaei-Jafari, H., Shaw, M. E., & Cherbuin, N. (2015). Cerebral atrophy in mild cognitive impairment: A systematic review with meta-analysis. Alzheimer’s & Dementia (Amsterdam, Netherlands), 1(4), 487–504. Alzheimers Dement (Amst). doi:10.1016/J.DADM.2015.11.002.
  • Talo, M., Yildirim, O., Baloglu, U. B., Aydin, G., & Medical Imaging and, and undefined 2019. (2022). Convolutional neural networks for multi-class brain disease detection using MRI images. Elsevier. https://www.sciencedirect.com/science/article/pii/S0895611119300886
  • Too, J., Sadiq, A. S., & Mirjalili, S. M. (2021). A conditional opposition-based particle swarm optimisation for feature selection. Taylor & Francis, 34(1), 339–361. doi:10.1080/09540091.2021.2002266.
  • Ulep, M. G., Saraon, S. K., & McLea, S. (2018). Alzheimer disease. The Journal for Nurse Practitioners, 14(3), Elsevier: 129–135. doi:10.1016/j.nurpra.2017.10.014
  • Venugopalan, J., Tong, L., Hassanzadeh, H. R., & Wang, M. D. (2021). Multimodal deep learning models for early detection of Alzheimer’s disease stage. Scientific Reports 2021, Nature Publishing Group 11(1), 1–13. doi:10.1038/s41598-020-74399-w.
  • Viña, J., & Lloret, A. (2010). Why women have more Alzheimer’s disease than Men: Gender and mitochondrial toxicity of amyloid-beta peptide. Journal of Alzheimer’s Disease : Jad, 20(SUPPL.2), J Alzheimers Dis. doi:10.3233/JAD-2010-100501.
  • Wada, A., Tsuruta, K., Irie, R., Kamagata, K., & in Medical Sciences, and undefined 2019. (2022). Differentiating Alzheimer’s disease from dementia with lewy bodies using a deep learning technique based on structural brain connectivity. Ncbi.Nlm.Nih.Gov. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6630050/
  • Wang, S. H., & Chen, Y. (2020). Fruit category classification via an eight-layer convolutional neural network with parametric rectified linear unit and dropout technique. Multimedia Tools and Applications, 79(21), Springer 15117–15133. doi:10.1007/S11042-018-6661-6
  • Wang, Z., Han, D., Li, M., Liu, H., & Cui, M. (2022). The abnormal traffic detection scheme based on PCA and SSH. Taylor & Francis 34(1), 1201–1220. doi:10.1080/09540091.2022.2051434.
  • Wenjin, H., Panpan, X., Guoyuan, H., Huiyuan, T., Huafei, S., & Chaoyang, Y. (2022). Few shot object detection for headdresses and seats in thangka Yidam based on ResNet and deformable convolution. Taylor & Francis, 34(1), 732–748. doi:10.1080/09540091.2022.2041554.
  • Wu, J., Zeng, P., Liu, P., & Lv, G. (2022). Automatic classification method of liver ultrasound standard plane images using Pre-trained convolutional neural network. Connection Science, 34(1), Taylor and Francis Ltd. 975–989. doi:10.1080/09540091.2021.2015748
  • Xu, T., Liu, P., Li, P., Wang, X., Xue, H., Guo, J., Dong, B., & Sun, P. (2022). Racnet: Risk assessment Net of cervical lesions in colposcopic images. Taylor & Francis 34(1), 2139–2157. doi:10.1080/09540091.2022.2085665.
  • Yagis, E., Citi, L., Diciotti, S., Marzi, C., Atnafu, S. W., & De Herrera, A. G. S. (2022). 3D convolutional neural networks for diagnosis of Alzheimer’s disease via structural MRI. Ieeexplore.Ieee.Org. https://ieeexplore.ieee.org/abstract/document/9183323/
  • Yang, B., Cai, A., & Lin, W. (2022). Analysis of early fault vibration detection and analysis of offshore wind power transmission based on deep neural network. Connection Science, Taylor & Francis 34(1), 1005–1017. doi:10.1080/09540091.2021.2025340
  • Yang, D., Du, Y., Yao, H., & Bao, L. (2022). Image semantic segmentation with hierarchical feature fusion based on deep neural network. Taylor & Francis: 34(1), 1772–1784. doi:10.1080/09540091.2022.2082384.
  • Yildirim, M., Cinar, A. C., & Ingénierie des Systèmes d Inf., and undefined 2020. (2022). Classification of Alzheimer’s Disease MRI Images with CNN Based Hybrid Method. Researchgate.Net. doi:10.18280/isi.250402.
  • Ying, L., Nan, Z. Q., Ping, W. F., Kiang, C. T., Pang, L. K., Chang, Z. H., Lu, C., Jun, L. G., & Nam, L. (2021). Adaptive weights learning in CNN feature fusion for crime scene investigation image classification. 33(3), Taylor & Francis, 719–734. doi:10.1080/09540091.2021.1875987.
  • Zaretsky, D. V., & Zaretskaia, M. V. (2021). Mini-Review: Amyloid degradation toxicity hypothesis of Alzheimer’s disease. Neuroscience Letters, 756(June), Elsevier 135959. doi:10.1016/j.neulet.2021.135959
  • Zhang, J., & Tai, Y. (2021). Secure medical digital twin via human-centric interaction and cyber vulnerability resilience. Taylor & Francis, 34(1), 895–910. doi:10.1080/09540091.2021.2013443.
  • Zhang, X. X., Tian, Y., Wang, Z. T., Ma, Y. H., Tan, L., & Yu, J. T. (2021). The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. Journal of Prevention of Alzheimer’s Disease, 8(3), Serdi-Editions 313–321. doi:10.14283/JPAD.2021.15/FIGURES/2.
  • Zhao, C., Li, X., Shao, Z., Yang, H., & Wang, F. (2022). Multi-Featured spatial-temporal and dynamic multi-graph convolutional network for metro passenger flow prediction. 34(1), Taylor & Francis 1252–1272. doi:10.1080/09540091.2022.2061915.
  • Zheng, Z., Zhou, Y., Sun, Y., Wang, Z., Liu, B., & Li, K. (2021). Applications of federated learning in smart cities: Recent advances, taxonomy, and open challenges. 34(1), Taylor & Francis 1–28. doi:10.1080/09540091.2021.1936455.