4,597
Views
2
CrossRef citations to date
0
Altmetric
Articles

AMGNET: multi-scale graph neural networks for flow field prediction

, , &
Pages 2500-2519 | Received 21 Jul 2022, Accepted 28 Sep 2022, Published online: 13 Oct 2022

References

  • Afshar, Y., Bhatnagar, S., Pan, S., Duraisamy, K., & Kaushik, S. (2019, August). Prediction of aerodynamic flow fields using convolutional neural networks. Computational Mechanics, 64(2), 525–545. https://doi.org/10.1007/s00466-019-01740-0
  • Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., & Faulkner, R. (2018). Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261
  • Braess, D., & Hackbusch, W. (1983). A new convergence proof for the multigrid method including the v−cycle. SIAM Journal on Numerical Analysis, 20(5), 967–975. https://doi.org/10.1137/0720066
  • Brandt, A., McCormick, S. F., & Ruge, J. (1984). Algebraic multigrid (AMG) for sparse matrix equations. In D. J. Evans (Ed.), Sparsity and its applications (pp. 257–284). Cambridge University Press.
  • Chang, F., Ge, L., Li, S., Wu, K., & Wang, Y. (2021). Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction. Connection Science, 33(3), 427–446. https://doi.org/10.1080/09540091.2020.1841095
  • de Avila Belbute-Peres, F., Economon, T. D., & Kolter, J. Z. (2020). Combining differentiable PDE solvers and graph neural networks for fluid flow prediction. In Proceedings of the 37th international conference on machine learning (icml 2020) (pp. 2402–2411). PMLR.
  • Gao, H., & Ji, S. (2019). Graph u-nets. In International conference on machine learning (pp. 2083–2092). PMLR.
  • Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. In Proceedings of the 34th international conference on machine learning(Vol. 70, pp. 1263–1272). JMLR.
  • Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning in graph domains. In Proceedings of the 2005 IEEE international joint conference on neural networks, 2005 (Vol. 2, pp. 729–734). IEEE.
  • Guo, X., Li, W., & Iorio, F. (2016). Convolutional neural networks for steady flow approximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 481–490). ACM.
  • Han, X. (2022). Predicting physics in mesh-reduced space with temporal attention. In International conference on learning representations. OpenReview.net.
  • Hartmann, D., Lessig, C., Margenberg, N., & Richter, T. (2020). A neural network multigrid solver for the navier-stokes equations. arXiv preprint arXiv:2008.11520
  • Hu, N., Zhang, D., Xie, K., Liang, W., & M. Y. Hsieh (2022). Graph learning-based spatial-temporal graph convolutional neural networks for traffic forecasting. Connection Science, 34(1), 429–448. https://doi.org/10.1080/09540091.2021.2006607
  • Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
  • Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907
  • Luz, I., Galun, M., Maron, H., Basri, R., & Yavneh, I. (2020). Learning algebraic multigrid using graph neural networks. In Proceedings of the 37th international conference on machine learning (p. 119). PMLR.
  • Olson, L. N., & Schroder, J. B. (2018). PyAMG: algebraic multigrid solvers in Python v4.0. URL https://github.com/pyamg/pyamg. Release 4.0.
  • Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., & Battaglia, P. W. (2021). Learning mesh-based simulation with graph networks. In International conference on learning representations. OpenReview.net.
  • Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). Pointnet++: deep hierarchical feature learning on point sets in a metric space. In Advances in neural information processing systems (pp. 5099–5108). MIT Press.
  • Ranjan, E., Sanyal, S., & Talukdar, P. (2020, April). Asap: adaptive structure aware pooling for learning hierarchical graph representations. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 4, pp. 5470–5477). AAAI.
  • Ruge, J. (1983). Algebraic multigrid (AMG) for geodetic survey problems. In Proceedings of the international multigrid conference.
  • Ruge, J., & Stüben, K. (1987). Algebraic multigrid (AMG). In S. F. McCormick (Ed.), Multigrid methods, frontiers in applied mathematics (pp. 73–130). SIAM.
  • Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., & Battaglia, P. (2020). Learning to simulate complex physics with graph networks. In International conference on machine learning (pp. 8459-8468). PMLR.
  • Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T., Merel, J., Riedmiller, M., Hadsell, R., & Battaglia, P. (2018). Graph networks as learnable physics engines for inference and control. In International conference on machine learning (pp. 4470–4479). PMLR.
  • Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). The graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80. https://doi.org/10.1109/TNN.2008.2005605
  • Seo, S., & Liu, Y. (2019). Differentiable physics-informed graph networks. arXiv preprint arXiv:1902.02950
  • Seo, S., Meng, C., & Liu, Y. (2021). Physics-aware difference graph networks for sparsely-observed dynamics. In International conference on learning representations. OpenReview.net.
  • Stüben, K. (2001). Algebraic multigrid (AMG): an introduction with applications. In U. Trottenberg, C. Oosterlee, and A. Schüller (Eds.), Multigrid. Academic Press.
  • Taghibakhshi, A., MacLachlan, S., Olson, L., & West, M. (2021). Optimization-based algebraic multigrid coarsening using reinforcement learning. In Advances in neural information processing systems. MIT Press.
  • Um, K., Hu, X., & Thuerey, N. (2018). Liquid splash modeling with neural networks. Computer Graphics Forum, 37(8), 171–182. https://doi.org/10.1111/cgf.2018.37.issue-8
  • Wiewel, S., Becher, M., & Thuerey, N. (2019). Latent space physics: towards learning the temporal evolution of fluid flow. Computer Graphics Forum, 38(2), 71–82. https://doi.org/10.1111/cgf.2019.38.issue-2
  • Xu, J., & Duraisamy, K. (2020). Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics. Computer Methods in Applied Mechanics and Engineering, 372(4), 113379. https://doi.org/10.1016/j.cma.2020.113379
  • Xu, J., Pradhan, A., & Duraisamy, K. (2021). Conditionally parameterized, discretization-aware neural networks for mesh-based modeling of physical systems. arXiv preprint arXiv:2109.09510
  • Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., & Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. arXiv preprint arXiv:1806.08804
  • Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. In Proceedings of the 32th international conference on neural information processing systems. MIT Press.
  • Yu, F., & Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions. In Proceedings of the international conference on learning representations. OpenReview.net.
  • Zhao, C., Li, X., Shao, Z., Yang, H., & Wang, F. (2022). Multi-featured spatial-temporal and dynamic multi-graph convolutional network for metro passenger flow prediction. Connection Science, 34(1), 1252–1272. https://doi.org/10.1080/09540091.2022.2061915