828
Views
0
CrossRef citations to date
0
Altmetric
Articles

Research on the Uyghur morphological segmentation model with an attention mechanism

ORCID Icon, , &
Pages 2577-2596 | Received 01 Mar 2022, Accepted 07 Oct 2022, Published online: 21 Oct 2022

References

  • Abudouwaili, G., Tuergen, Y., Kahaerjiang, A., & Wang, L. (2019). Research on Uyghur stemming based on Bi-LSTM-CRF model. Journal of Chinese Information Processing, 33(8), 60–66. https://doi.org/10.3969/j.issn.1003-0077.2019.08.008
  • Abudubiyaz, A., Ablimit, M., & Hamdulla, A. (2020). The acoustical and language modeling issues on Uyghur speech recognition. 2020 13th international conference on intelligent computation technology and automation (ICICTA) (pp. 366-369). IEEE.
  • Abudukelimu, H., Sun, M., Liu, Y., & Abulizi, A. (2017). Uyghur morphological segmentation with bidirectional GRU neural networks. Journal of Tsinghua University(Science and Technology), 57(1), 1–6. https://doi.org/10.16511/j.cnki.qhdxxb.2017.21.001
  • Abudukelimu, H., Sun, M., Liu, Y., & Abulizi, A. (2018). THUUyMorph: An Uyghur morpheme segmentation corpus. Journal of Chinese Information Processing, 32(2), 81–86. https://doi.org/10.3969/j.issn.1003-0077.2018.02.011
  • Bareket, D., & Tsarfaty, R. (2021). Neural modeling for named entities and morphology (NEMO2). Transactions of the Association for Computational Linguistics, 9, 909–928. https://doi.org/10.1162/tacl_a_00404
  • Brusilovsky, I., & Tsarfaty, R. (2022). Neural Token Segmentation for High Token-Internal Complexity. arXiv:2203.10845.
  • Cao, Z., Zhou, Y., Yang, A., & Peng, S. (2021). Deep transfer learning mechanism for fine-grained cross-domain sentiment classification. Connection Science, 33(4), 911–928. https://doi.org/10.1080/09540091.2021.1912711
  • Chun, X. U., Tong-Hai, J. I., Kai, Y. U., & Wen-Bin, J. I. (2018). Model construction of Uygur and Korean morphological analysis. Journal of Beijing University of Posts and Telecom, 41(1), 88–94. https://doi.org/10.13190/j.jbupt.2017-117
  • Grönroos, S.-A., Virpioja, S., & Kurimo, M.. (2020). Morfessor EM + prune: Improved subword segmentation with expectation maximization and pruning. In Proceedings of the Twelfth Language Resources and Evaluation Conference (pp. 3944–3953).
  • Haibo, Z., Qiawu, C., Wenbin, J., Yajuan, L., & Qun, L. (2014). A joint voice harmony restoration and morphological segmentation model for morphological analysis. Journal of Chinese Information Processing, 28(6), 9–17. https://doi.org/10.3969/j.issn.1003-0077.2014.06.002
  • Harris, Z. S. (1955). From phoneme to morpheme. Linguistic Society of America. 190-222.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Imin, G., Ablimit, M., Yilahun, H., & Hamdulla, A. (2022). A character string-based stemming for morphologically derivative languages. Information, 13(4), 170. https://doi.org/10.3390/info13040170
  • Li, J., & Girrbach, L. (2022). Word Segmentation and Morphological Parsing for Sanskrit. arXiv e-prints: p. arXiv:2201.12833.
  • Lin, N., Li, J., & Jiang, S. (2022). A simple but effective method for Indonesian automatic text summarisation. Connection Science, 34(1), 29–43. https://doi.org/10.1080/09540091.2021.1937942
  • Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. IEEE transactions on pattern analysis & machine intelligence. 99: p. 2999-3007.
  • Liu, C., Abulizi, A., YAO, D., &Abudukelimu, H. (2021). Survey for Uyghur morphological analysis. Computer Engineering and Applications, 57(15), 42–61. https://doi.org/10.3778/j.issn.1002-8331.2103-0278
  • Mager, M., Çetinoğlu, Ö, & Kann, K. (2020). Tackling the Low-resource Challenge for Canonical Segmentation. arXiv:2010.02804.
  • Moeng, T., Reay, S., Daniels, A., & Buys, J. (2021). Canonical and surface morphological segmentation for nguni languages. Southern African conference for artificial intelligence research (pp. 125-139), Springer, Cham.
  • Müller, R., Kornblith, S., & Hinton, G. (2019). When Does Label Smoothing Help? arXiv:1906.02629.
  • Munire, M., Li, X., & Yang, Y. (2019). Construction of the Uyghur noun morphological Re-inflection model based on hybrid strategy. Applied Sciences, 9(4), 722. https://doi.org/10.3390/app9040722
  • Ortega, J. E., Castro Mamani, R., & Cho, K. (2020). Neural machine translation with a polysynthetic low resource language. Machine Translation, 34(4), 325–346. https://doi.org/10.1007/s10590-020-09255-9
  • Osman, T., Yang, Y., Tursun, E., & Cheng, L. (2019). Collaborative analysis of Uyghur morphology based on character level. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(1), 47–54. https://doi.org/10.13209/j.0479-8023.2018.067
  • Pappas, N., & Popescu-Belis, A. (2017). Multilingual hierarchical attention networks for document classification. International joint conference on natural language processing (pp. 1015–1025).
  • Parhat, S., Ablimit, M., & Hamdulla, A. (2019). A robust morpheme sequence and convolutional neural network-based Uyghur and Kazakh short text classification. Information, 10(12), 387. https://doi.org/10.3390/info10120387
  • Sardar, P., Mijit, A., & Askar, H. (2020). Uyghur short text classification based on robust morpheme sequence and LSTM. Journal of Chinese Information Processing, 34(1), 63–70. https://doi.org/10.3969/j.issn.1003-0077.2020.01.009
  • Seker, A., & Tsarfaty, R. (2020). A Pointer Network Architecture for Joint Morphological Segmentation and Tagging. Online: Association for Computational Linguistics.
  • Sorokin, A. (2019). Convolutional neural networks for low-resource morpheme segmentation: Baseline or state-of-the-art? Association for Computational Linguistics.
  • Sorokin, A., & Kravtsova, A. (2018). Deep convolutional networks for supervised morpheme segmentation of Russian language. Springer International Publishing.
  • Tang, X., Wang, J., & Su, Q. (2022). Chinese Word Segmentation with Heterogeneous Graph Neural Network. arXiv e-prints: p. arXiv:2201.08975.
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł, & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998–6008. https://doi.org/10.48550/arXiv.1706.03762
  • Wang, W., Fam, R., Bao, F., Lepage, Y., & Gao, G. (2019). Neural morphological segmentation model for Mongolian. International joint conference on neural network. p. 1-7.
  • Wu, S., Liu, Y., Zou, Z., & Weng, T. H. (2022). S_I_LSTM: Stock price prediction based on multiple data sources and sentiment analysis. Connection Science, 34(1), 44–62. https://doi.org/10.1080/09540091.2021.1940101
  • Xu, H., Zhang, S., Zhu, G., & Zhu, H. (2022). ALSEE: A framework for attribute-level sentiment element extraction towards product reviews. Connection Science, 34(1), 205–223. https://doi.org/10.1080/09540091.2021.1981825
  • Yan, Y., Xiao, Z., Xuan, Z., & Ou, Y. (2021). Implicit emotional tendency recognition based on disconnected recurrent neural networks. International Journal of Computational Science and Engineering, 24(1), 1–8. https://doi.org/10.1504/IJCSE.2021.113616
  • Yang, Y., Li, S., Zhang, Y., & Zhang, H. P. (2019). Point the point: Uyghur morphological segmentation using pointernetwork with GRU. China national conference on Chinese computational linguistics (pp. 371-381), Springer, Cham.
  • Zhang, S., Yu, H., & Zhu, G. (2022). An emotional classification method of Chinese short comment text based on ELECTRA. Connection Science, 34(1), 254–273. https://doi.org/10.1080/09540091.2021.1985968
  • Zhao, H., Lu, J., & Cao, J. (2020). A short text conversation generation model combining BERT and context attention mechanism. International Journal of Computational Science and Engineering, 23(2), 136–144. https://doi.org/10.1504/IJCSE.2020.110536
  • Zhao, W., Zhao, S., Chen, S., Weng, T. H., & Kang, W. (2022). Entity and relation collaborative extraction approach based on multi-head attention and gated mechanism. Connection Science, 34(1), 670–686. https://doi.org/10.1080/09540091.2022.2026295