1,192
Views
1
CrossRef citations to date
0
Altmetric
Articles

Automated breast cancer detection by reconstruction independent component analysis (RICA) based hybrid features using machine learning paradigms

, , , , , , , & show all
Pages 2784-2806 | Received 04 May 2022, Accepted 20 Nov 2022, Published online: 28 Nov 2022

References

  • Acharya, U. R., Ng, W. L., Rahmat, K., Sudarshan, V. K., Koh, J. E. W., Tan, J. H., Hagiwara, Y., Yeong, C. H., & Ng, K. H. (2017). Data mining framework for breast lesion classification in shear wave ultrasound: A hybrid feature paradigm. Biomedical Signal Processing and Control, 33(December 2016), 400–410. https://doi.org/10.1016/j.bspc.2016.11.004
  • Ardakani, A. A., Gharbali, A., & Mohammadi, A. (2015). Classification of breast tumors using sonographic texture analysis. Journal of Ultrasound in Medicine, 34(2), 225–231. https://doi.org/10.7863/ultra.34.2.225
  • B., M., & Shankar, P. (2017). Awareness and screening behaviors of breast cancer among urban women in Mysuru, India- need for breast health education program. International Journal of Community Medicine And Public Health, 4(8), 2967–2972. https://doi.org/10.18203/2394-6040.ijcmph20173354
  • Becker, A. S., Marcon, M., Ghafoor, S., Wurnig, M. C., Frauenfelder, T., & Boss, A. (2017). Deep learning in mammography. Investigative Radiology, 52(7), 434–440. https://doi.org/10.1097/RLI.0000000000000358
  • Boureau, Y. L., Ponce, J., & LeCun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 111–118).
  • Cheng, H. D. D., Shi, X. J. J., Min, R., Hu, L. M. M., Cai, X. P. P., & Du, H. N. N. (2006). Approaches for automated detection and classification of masses in mammograms. Pattern Recognition, 39(4), 646–668. https://doi.org/10.1016/j.patcog.2005.07.006
  • Cruz, J. A., & Wishart, D. S. (2006). Applications of machine learning in cancer prediction and prognosis. Cancer Informatics, 2, 117693510600200. https://doi.org/10.1177/117693510600200030
  • Desantis, C. E., Fedewa, S. A., Sauer, A. G., Kramer, J. L., Smith, R. A., & Jemal, A. (2016). Breast cancer statistics, 2015 : convergence of incidence rates between black and white women. A Cancer Journal for Clinicians, 66(1), 31–42. https://doi.org/10.3322/caac.21320
  • Dhahri, H., Al Maghayreh, E., Mahmood, A., Elkilani, W., & Faisal Nagi, M. (2019). Automated breast cancer diagnosis based on machine learning algorithms. Journal of Healthcare Engineering, 2019, 1–11. https://doi.org/10.1155/2019/4253641
  • Dheeba, J., Albert Singh, N., & Tamil Selvi, S. (2014). Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. Journal of Biomedical Informatics, 49, 45–52. https://doi.org/10.1016/j.jbi.2014.01.010
  • Doi, K., Ph, D., & Rossmann, K. (1996). Computer- aided diagnosis : Potential usefulness in : Diagnostic radiology and telemedicine. Research, Practice, and Opportunities, Proceedings of the National Forum, McLean, VA, USA, 9–13. https://doi.org/10.1109/MTOL.1995.504521
  • Doyle, S., Hwang, M., Shah, K., Madabhushi, A., Feldman, M., & Tomaszeweski, J. (2007). Automated grading of prostate cancer using architectural and textural image features. 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 1284–1287. https://doi.org/10.1109/ISBI.2007.357094. 1284 1287 >
  • Falconi, L. G., Perez, M., & Aguilar, W. G. (2019). Transfer Learning in Breast Mammogram Abnormalities Classification With Mobilenet and Nasnet. 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), 109–114. https://doi.org/10.1109/IWSSIP.2019.8787295
  • Fehr, D., Veeraraghavan, H., Wibmer, A., Gondo, T., Matsumoto, K., Vargas, H. A., Sala, E., Hricak, H., & Deasy, J. O. (2015). Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proceedings of the National Academy of Sciences, 112(46), E6265–E6273. https://doi.org/10.1073/pnas.1505935112
  • Forouzanfar, M. H., Foreman, K. J., Delossantos, A. M., Lozano, R., Lopez, A. D., Murray, C. J. L., & Naghavi, M. (2011). Breast and cervical cancer in 187 countries between 1980 and 2010: A systematic analysis. The Lancet, 378(9801), 1461–1484. https://doi.org/10.1016/S0140-6736(11)61351-2
  • Gupta, S., Saravanan, V., Choudhury, A., Alqahtani, A., Abonazel, M. R., & Babu, K. S. (2022). Supervised computer-aided diagnosis (CAD) methods for classifying Alzheimer’s disease-based neurodegenerative disorders. Computational and Mathematical Methods in Medicine, 2022, 1–10. https://doi.org/10.1155/2022/9092289
  • Heath, M., Kevin, B., Daniel, K., K, P., Richard, M., & Kyong, C. (1998). Current status of the digital database for screening mammography. In N. Karssemeijer, M. Thijssen, J. Hendriks, & L. van Erning (Eds.), Digital mammography (pp. 457–460). Springer.
  • Houssami, N., Lee, C. I., Buist, D. S. M., & Tao, D. (2017). Artificial intelligence for breast cancer screening: Opportunity or hype? The Breast, 36, 31–33. https://doi.org/10.1016/j.breast.2017.09.003
  • Hyvärinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural image statistics: A probabilistic approach to early computational vision (Vol. 39). Springer Science & Business Media.
  • Hussain, L. (2018). Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach. Cognitive Neurodynamics, 12(3), 271–294. https://doi.org/10.1007/s11571-018-9477-1
  • Hussain, L., Ahmed, A., Saeed, S., Rathore, S., Awan, I. A., Shah, S. A., Majid, A., Idris, A., & Awan, A. A. (2018). Prostate cancer detection using machine learning techniques by employing combination of features extracting strategies. Cancer Biomarkers, 21(2), 393–413. https://doi.org/10.3233/CBM-170643
  • Hussain, L., Almaraashi, M. S., Aziz, W., Habib, N., & Saif Abbasi, S.-U.-R. (2021). Machine learning-based lungs cancer detection using reconstruction independent component analysis and sparse filter features. Waves in Random and Complex Media, 32, 1–26. https://doi.org/10.1080/17455030.2021.1905912
  • Hussain, L., Aziz, W., Alshdadi, A. A. A., Ahmed Nadeem, M. S., Khan, I. R., & Chaudhry, Q.-U.-A. (2019). Analyzing the dynamics of lung cancer imaging data using refined fuzzy entropy methods by extracting different features. IEEE Access, 7, 64704–64721. https://doi.org/10.1109/ACCESS.2019.2917303
  • Hussain, L., Aziz, W., Khan, I. R., Alkinani, M. H., & Alowibdi, J. S. (2021). Machine learning based congestive heart failure detection using feature importance ranking of multimodal features. Mathematical Biosciences and Engineering, 18(1), 69–91. https://doi.org/10.3934/mbe.2021004
  • Hussain, L., Aziz, W., Saeed, S., Rathore, S., & Rafique, M. (2018). Automated Breast Cancer Detection Using Machine Learning Techniques by Extracting Different Feature Extracting Strategies. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 327–331. https://doi.org/10.1109/TrustCom/BigDataSE.2018.00057
  • Hussain, L., Nguyen, T., Li, H., Abbasi, A. A., Lone, K. J., Zhao, Z., ... & Duong, T. Q. (2020). Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection. BioMedical Engineering OnLine, 19(1), 1–18.
  • Hussain, L., Rathore, S., Abbasi, A. A., & Saeed, S. (2019). Automated lung cancer detection based on multimodal features extracting strategy using machine learning techniques. In H. Bosmans, G.-H. Chen, & T. Gilat Schmidt (Eds.), Medical imaging 2019: Physics of medical imaging (Vol. 10948. pp. 64704–64721). SPIE. https://doi.org/10.1117/12.2512059
  • Hussain, L., Saeed, S., Awan, I. A., Idris, A., Nadeem, M. S. A. A. A. A. A., Chaudhry, Q.-A., Chaudhary, Q.-A., Chaudhry, Q.-A., & Chaudhary, Q.-A. (2019). Detecting brain tumor using machine learning techniques based on different features extracting strategies. Current Medical Imaging Formerly Current Medical Imaging Reviews, 14(1), 595–606. https://doi.org/10.2174/1573405614666180718123533
  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430. https://doi.org/10.1016/S0893-6080(00)00026-5
  • Jemal, A., Bray, F., & Ferlay, J. (1999). Global cancer statistics: 2011. CA: A Cancer Journal for Clinicians, 49(2), 69–90. https://doi.org/10.3322/caac.20107.Available
  • Jen, C., & Yu, S. (2015). Expert systems with applications automatic detection of abnormal mammograms in mammographic images. Expert Systems with Applications, 42(6), 3048–3055. https://doi.org/10.1016/j.eswa.2014.11.061
  • Khamparia, A., Bharati, S., Podder, P., Gupta, D., Khanna, A., Phung, T. K., & Thanh, D. N. H. (2021). Diagnosis of breast cancer based on modern mammography using hybrid transfer learning. Multidimensional Systems and Signal Processing, 32(2), 747–765. https://doi.org/10.1007/s11045-020-00756-7
  • Kharya, S. (2014). Naive Bayes classifiers : A probabilistic detection model for breast cancer. CA: a Cancer Journal for Clinicians, 92(10), 26–31. https://doi.org/10.5120/16045-5206
  • Ko, J. M., Nicholas, M. J., Mendel, J. B., & Slanetz, P. J. (2006). Prospective assessment of computer-aided detection in interpretation of screening mammography. American Journal of Roentgenology, 187(6), 1483–1491. https://doi.org/10.2214/AJR.05.1582
  • Kolb, T. M., Lichy, J., & Newhouse, J. H. (2002). Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology, 225(1), 165–175. https://doi.org/10.1148/radiol.2251011667
  • Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C. I., Mann, R., den Heeten, A., & Karssemeijer, N. (2017). Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis, 35, 303–312. https://doi.org/10.1016/j.media.2016.07.007
  • Kumar, G. (2014). A detailed review of feature extraction in image processing systems. 5–12. https://doi.org/10.1109/ACCT.2014.74
  • LeCun, Y. (2012). Learning invariant feature hierarchies. In: A. Fusiello, V. Murino, & R. Cucchiara, (Eds.), Computer vision - ECCV 2012. Workshops and Demonstrations. ECCV 2012. Lecture Notes in Computer Science (Vol. 7583). Springer. https://doi.org/10.1007/978-3-642-33863-2_51
  • Lehman, C. D., Wellman, R. D., Buist, D. S. M., Kerlikowske, K., Tosteson, A. N. A., & Miglioretti, D. L. (2015). Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Internal Medicine, 175(11), 1828–1837. https://doi.org/10.1001/jamainternmed.2015.5231
  • Lei, Y., Shan, H., Jia, F., & Lin, J. (2016). Reconstruction independent component analysis-based methods for intelligent fault diagnosis. 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 245–250. https://doi.org/10.1109/CSCWD.2016.7565996
  • Li, X., Qin, G., He, Q., Sun, L., Zeng, H., He, Z., Chen, W., Zhen, X., & Zhou, L. (2020). Digital breast tomosynthesis versus digital mammography: Integration of image modalities enhances deep learning-based breast mass classification. European Radiology, 30(2), 778–788. https://doi.org/10.1007/s00330-019-06457-5
  • Litjens, G., Sánchez, C. I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., Hulsbergen - van de Kaa, C., Bult, P., van Ginneken, B., & van der Laak, J. (2016). Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports, 6(1), 1–11. https://doi.org/10.1038/srep26286
  • Machida, Y., Shimauchi, A., Kuroki, Y., Tozaki, M., Kato, Y., Hoshi, K., & Fukuma, E. (2017). Single focus on breast magnetic resonance imaging: Diagnosis based on kinetic pattern and patient age. Acta Radiologica, 58(6), 652–659. https://doi.org/10.1177/0284185116668212
  • Malebary, S. J., & Hashmi, A. (2021). Automated breast mass classification system using deep learning and ensemble learning in digital mammogram. IEEE Access, 9, 55312–55328. https://doi.org/10.1109/ACCESS.2021.3071297
  • Meselhy, M., Faye, I., & Belhaouari, B. (2012). A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. Computers in Biology and Medicine, 42(1), 123–128. https://doi.org/10.1016/j.compbiomed.2011.10.016
  • Metz, C. E. (1986). ROC methodology in radiologic imaging. Investigative Radiology, 21(9), 720–733. http://www.ncbi.nlm.nih.gov/pubmed/3095258 https://doi.org/10.1097/00004424-198609000-00009
  • Mobark, N., Hamad, S., & Rida, S. Z. (2022). Coronet: Deep neural network-based end-to-end training for breast cancer diagnosis. Applied Sciences, 12(14), 7080. https://doi.org/10.3390/app12147080
  • Motakis, E., Ivshina, A., & Kuznetsov, V. (2009). Data-driven approach to predict survival of cancer patients. IEEE Engineering in Medicine and Biology Magazine, 28(4), 58–66. https://doi.org/10.1109/MEMB.2009.932937
  • Nasir Khan, H., Shahid, A. R., Raza, B., Dar, A. H., & & Alquhayz, H. (2019). Multi-view feature fusion based four views model for mammogram classification using convolutional neural network. IEEE Access, 7, 165724–165733. https://doi.org/10.1109/ACCESS.2019.2953318
  • Nassif, A. B., Talib, M. A., Nasir, Q., Afadar, Y., & Elgendy, O. (2022). Breast cancer detection using artificial intelligence techniques: A systematic literature review. Artificial Intelligence in Medicine, 127, Article 102276. https://doi.org/10.1016/j.artmed.2022.102276
  • Oakden-Rayner, L., Carneiro, G., Bessen, T., Nascimento, J. C., Bradley, A. P., & Palmer, L. J. (2017). Precision radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework. Scientific Reports, 7(1), 1648. https://doi.org/10.1038/s41598-017-01931-w
  • Oliver, A., Torrent, A., Lladó, X., Tortajada, M., Tortajada, L., Sentís, M., Freixenet, J., & Zwiggelaar, R. (2012). Knowledge-based systems automatic microcalcification and cluster detection for digital and digitised mammograms. Knowledge-Based Systems, 28, 68–75. https://doi.org/10.1016/j.knosys.2011.11.021
  • Orrù, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli, A. (2012). Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neuroscience & Biobehavioral Reviews, 36(4), 1140–1152. https://doi.org/10.1016/j.neubiorev.2012.01.004
  • Park, S., Kong, H.-J., Moon, W. K., & Kim, H. C. (2007). Segmentation of Solid Nodules in Ultrasonographic Breast Image Based on Wavelet Transform. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 5649–5652. https://doi.org/10.1109/IEMBS.2007.4353628
  • Parmar, C., Bakers, F. C. H., Peters, N. H. G. M., & Beets-, R. G. H. (2017). Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-05728-9
  • Qian, W., Mao, F., Sun, X., Zhang, Y., Song, D., & Clarke, R. A. (2002). An improved method of region grouping for microcalcification detection in digital mammograms. Computerized Medical Imaging and Graphics, 26(6), 361–368. https://doi.org/10.1016/S0895-6111(02)00045-9
  • Qureshi, S. A., Hussain, L., Chaudhary, Q. U., Abbas, S. R., Khan, R. J., Ali, A., & Al-Fuqaha, A. (2022a). Kalman filtering and bipartite matching based super-chained tracker model for online multi object tracking in video sequences. Applied Sciences, 12(19), 9538.
  • Qureshi, S. A., Raza, S. E., Hussain, L., Malibari, A. A., Nour, M. K., Rehman, A. U., Al-Wesabi, F. N., & Hilal, A. M. (2022b). Intelligent ultra-light deep learning model for multi-class brain tumor detection. Applied Sciences, 12(8), 3715.
  • Rathore, N., Divya, T., & Agarwal, S. (2014). Predicting the survivability of breast cancer patients using ensemble approach. 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), 459–464. https://doi.org/10.1109/ICICICT.2014.6781326
  • Rathore, S., Hussain, M., Aksam Iftikhar, M., & Jalil, A. (2014). Ensemble classification of colon biopsy images based on information rich hybrid features. Computers in Biology and Medicine, 47(1), 76–92. https://doi.org/10.1016/j.compbiomed.2013.12.010
  • Rathore, S., Iftikhar, A., Ali, A., Hussain, M., & Jalil, A. (2012). Capture largest included circles: An approach for counting red blood cells. Communications in Computer and Information Science, 281, 373–384. https://doi.org/10.1007/978-3-642-28962-0_36
  • Rejani, Y. I. A., & Selvi, S. T. (2009). Early detection of breast cancer using SVM classifier technique., 1(3), 127–130. arXiv e-prints(2009): arXiv-0912.
  • S R, S. C., & Rajaguru, H. (2021). Deep features with improved extreme learning machine for breast cancer classification. 2021 8th International Conference on Soft Computing & Machine Intelligence (ISCMI), 237–241. https://doi.org/10.1109/ISCMI53840.2021.9654814
  • Salama, W. M., & Aly, M. H. (2021). Deep learning in mammography images segmentation and classification: Automated CNN approach. Alexandria Engineering Journal, 60(5), 4701–4709. https://doi.org/10.1016/j.aej.2021.03.048
  • Salem, A., & Bin, A. (2017). Breast cancer classification enhancement based on entropy method. August, 7–11. https://doi.org/10.24032/ijeacs/0208/06
  • Saroja, B., & Selwin Mich Priyadharson, A. (2018). Colon cancer detection methods-A review.” Annual Research & Review in Biology, 1–16.
  • Sathish, D., Kamath, S., Rajagopal, K. V., & Prasad, K. (2016). Medical imaging techniques and computer aided diagnostic approaches for the detection of breast cancer with an emphasis on thermography-a review. International Journal of Medical Engineering and Informatics, 8(3), 275–299. https://doi.org/10.1504/IJMEI.2016.077446
  • Skaane, P., & Engedal, K. (1998). Analysis of sonographic features in the differentiation of fibroadenoma and invasive ductal carcinoma. AJR. American Journal of Roentgenology, 170(1), 109–114. https://doi.org/10.2214/ajr.170.1.9423610
  • Sprague, B. L., Conant, E. F., Onega, T., Garcia, M. P., Beaber, E. F., Herschorn, S. D., Lehman, C. D., Tosteson, A. N. A., Lacson, R., Schnall, M. D., Kontos, D., Haas, J. S., Weaver, D. L., & Barlow, W. E. (2016). Variation in mammographic breast density assessments among radiologists in clinical practice: A multicenter observational study. Annals of Internal Medicine, 165(7), 457–464. https://doi.org/10.7326/M15-2934
  • Telagarapu, P., & Poonguzhali, S. (2014). Analysis of contourlet texture feature extraction to classify the benign and malignant tumors from breast ultrasound images, 6(1), 293–305.
  • Tian, J., & Zhang, J. (2022). Breast cancer diagnosis using feature extraction and boosted C5.0 decision tree algorithm with penalty factor. Mathematical Biosciences and Engineering, 19(3), 2193–2205. https://doi.org/10.3934/mbe.2022102
  • Trister, A. D., Buist, D. S. M., & Lee, C. I. (2017). Will machine learning Tip the balance in breast cancer screening? JAMA Oncology, 3(11), 1463–1464. https://doi.org/10.1001/jamaoncol.2017.0473
  • Venkatesan, E. V. (2015). Performance analysis of decision tree algorithms for breast cancer classiication. December 2016. https://doi.org/10.17485/ijst/2015/v8i
  • Verma, B. (2008). Novel network architecture and learning algorithm for the classification of mass abnormalities in digitized mammograms. Artificial Intelligence in Medicine, 42(1), 67–79. https://doi.org/10.1016/j.artmed.2007.09.003
  • Vijayarajeswari, R., Parthasarathy, P., Vivekanandan, S., & Basha, A. A. (2019). Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform. Measurement, 146, 800–805. https://doi.org/10.1016/j.measurement.2019.05.083
  • Xiao, Y., Zhu, Z., Zhao, Y., Wei, Y., & Wei, S. (2015). Kernel reconstruction ICA for sparse representation. IEEE Transactions on Neural Networks and Learning Systems, 26(6), 1222–1232. https://doi.org/10.1109/TNNLS.2014.2334711
  • Zhang, F., Luo, L., Sun, X., Zhou, Z., Li, X., Yu, Y., & Wang, Y. (2019). Cascaded generative and discriminative learning for microcalcification detection in breast mammograms. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12(14), 12570–12578. https://doi.org/10.1109/CVPR.2019.01286
  • Zhang, L., Li, J., Xiao, Y., Cui, H., Du, G., Wang, Y., Li, Z., Wu, T., Li, X., & Tian, J. (2015). Identifying ultrasound and clinical features of breast cancer molecular subtypes by ensemble decision. Scientific Reports, 5(1), 1–14. https://doi.org/10.1038/srep11085
  • Zhang, Y., Tomuro, N., Furst, J., & Stan Raicu, D. (2009, September). Using BI-RADS descriptors and ensemble learning for classifying masses in mammograms. In MICCAI International Workshop on medical content-based retrieval for clinical decision support (pp. 69–76). Springer.
  • Zhu, Y., Hu, X., Zhang, Y., & Li, P. (2018). Transfer learning with stacked reconstruction independent component analysis. Knowledge-Based Systems, 152, 100–106. https://doi.org/10.1016/j.knosys.2018.04.010