1,905
Views
35
CrossRef citations to date
0
Altmetric
Articles

Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody

, , , , &
Pages 274-287 | Received 21 Jul 2016, Accepted 20 Nov 2016, Published online: 07 Dec 2016

References

  • Bakirdere, S., Yaroglu, T., Tirik, N., Demiroz, M., & Karaca, A. (2014). Determination of trace aflatoxin M1 levels in milk and milk products consumed in Turkey by using enzyme-linked immunosorbent assay. Food and Agricultural Immunology, 25(1), 61–69. doi: 10.1080/09540105.2012.733354
  • Barbau-Piednoir, E., Botteldoorn, N., Mahillon, J., Dierick, K., & Roosens, N. H. (2015). Fast and discriminative CoSYPS detection system of viable salmonella spp. and Listeria spp. In carcass swab samples. International Journal of Food Microbiology, 192, 103–110. doi: 10.1016/j.ijfoodmicro.2014.09.018
  • Beauchamp, S., D’Auria, S., Pennacchio, A., & Lacroix, M. (2012). A new competitive fluorescence immunoassay for detection of Listeria monocytogenes. Analytical Methods, 4(12), 4187–4192. doi: 10.1039/c2ay25997d
  • Chen, Y., Wang, Y., Liu, L., Wu, X., Xu, L., Kuang, H., … Xu, C. (2015). A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams. Nanoscale, 7(39), 16381–16388. doi: 10.1039/C5NR04987C
  • Cho, I. H., & Irudayaraj, J. (2013). Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes. Analytical & Bioanalytical Chemistry, 405(10), 3313–3319. doi: 10.1007/s00216-013-6742-3
  • Guo, J. N., Liu, L. Q., Xue, F., Xing, C. R., Song, S. S., Kuang, H., & Xu, C. L. (2015). Development of a monoclonal antibody-based immunochromatographic strip for cephalexin. Food and Agricultural Immunology, 26(2), 282–292. doi: 10.1080/09540105.2014.907242
  • Hashemi, M. (2016). Aflatoxin B1 levels in feedstuffs from dairy cow farms in south of Iran. Food and Agricultural Immunology, 27(2), 251–258. doi: 10.1080/09540105.2015.1086319
  • Jamali, H., Paydar, M., Ismail, S., Looi, C. Y., Wong, W. F., Radmehr, B., & Abedini, A. (2015). Prevalence, antimicrobial susceptibility and virulotyping of Listeria species and Listeria monocytogenes isolated from open-air fish markets. BMC Microbiology, 15, 144. doi: 10.1186/s12866-015-0476-7
  • Kim, H. S., Cho, I. H., Seo, S. M., Jeon, J. W., & Paek, S. H. (2012). In situ immuno-magnetic concentration-based biosensor systems for the rapid detection of Listeria monocytogenes. Materials Science & Engineering C-Materials for Biological Applications, 32(2), 160–166. doi: 10.1016/j.msec.2011.10.012
  • Kim, M., Kim, M. S., Kweon, S. H., Jeong, S., Kang, M. H., Kim, M. I., … Doh, J. (2015). Simple and sensitive point-of-care bioassay system based on hierarchically structured enzyme-mimetic nanoparticles. Advanced Healthcare Materials, 4(9), 1311–1316. doi: 10.1002/adhm.201500173
  • Kim, S.-H., Park, M.-K., Kim, J.-Y., Chuong, P. D., Lee, Y.-S., Yoon, B.-S., … Lim, Y.-K. (2005). Development of a sandwich ELISA for the detection of Listeria spp. using specific flagella antibodies. Journal of Veterinary Science, 6(1), 41–46.
  • Kong, D., Liu, L., Song, S., Suryoprabowo, S., Li, A., Kuang, H., … Xu, C. (2016). A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale, 8(9), 5245–5253. doi: 10.1039/C5NR09171C
  • Kong, D. Z., Liu, L. Q., Xing, C. R., Kuang, H., & Xu, C. L. (2015). Sensitive and highly specific detection of Cronobacter sakazakii based on monoclonal sandwich ELISA. Food and Agricultural Immunology, 26(4), 566–576. doi: 10.1080/09540105.2014.998634
  • Kuang, H., Wang, W., Xu, L., Ma, W., Liu, L., Wang, L., & Xu, C. (2013). Monoclonal antibody-based sandwich ELISA for the detection of Staphylococcal Enterotoxin A. International Journal of Environmental Research and Public Health, 10(4), 1598–1608. doi: 10.3390/ijerph10041598
  • Law, J. W. F., Ab Mutalib, N. S., Chan, K. G., & Lee, L. H. (2015). Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5, 770. doi: 10.3389/fmicb.2014.00770
  • Lee, S. H., Ahn, J. Y., Lee, K. A., Um, H. J., Sekhon, S. S., Park, T. S., … Kim, Y. H. (2015). Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes. Biosensors and Bioelectronics, 68, 272–280. doi: 10.1016/j.bios.2015.01.009
  • Li, A., Tang, L., Song, D., Song, S., Ma, W., Xu, L., … Xu, C. (2016). A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale, 8(4), 1873–1878. doi: 10.1039/C5NR08372A
  • Li, X., & Liu, X. (2016). A microfluidic paper-based origami nanobiosensor for label-free, ultrasensitive immunoassays. Advanced Healthcare Materials, 5(11), 1326–1335. doi: 10.1002/adhm.201501038
  • Liao, Y. H., Zhou, X. M., & Xing, D. (2014). Quantum dots and graphene oxide fluorescent switch based multivariate testing strategy for reliable detection of Listeria monocytogenes. Acs Applied Materials & Interfaces, 6(13), 9988–9996. doi: 10.1021/am503230h
  • Lisi, F., Falcaro, P., Buso, D., Hill, A. J., Barr, J. A., Crameri, G., … Mulvaney, P. (2012). Rapid detection of hendra virus using magnetic particles and quantum dots. Advanced Healthcare Materials, 1(5), 631–634. doi: 10.1002/adhm.201200072
  • Mahmoudi, R., & Norian, R. (2015). Aflatoxin B1 and M1 contamination in cow feeds and milk from Iran. Food and Agricultural Immunology, 26(1), 131–137. doi: 10.1080/09540105.2013.876977
  • Mao, Y., Huang, X. L., Xiong, S. C., Xu, H. Y., Aguilar, Z. P., & Xiong, Y. H. (2016). Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce. Food Control, 59, 601–608. doi: 10.1016/j.foodcont.2015.06.048
  • Ohk, S. H., Koo, O. K., Sen, T., Yamamoto, C. M., & Bhunia, A. K. (2010). Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. Journal of Applied Microbiology, 109(3), 808–817. doi: 10.1111/j.1365-2672.2010.04709.x
  • Ruhland, G. J., Hellwig, M., Wanner, G., & Fiedler, F. (1993). Cell-surface location of Listeria-specific protein p60–detection of Listeria cells by indirect immunofluorescence. Journal of General Microbiology, 139(3), 609–616. doi: 10.1099/00221287-139-3-609
  • Sharma, H., & Mutharasan, R. (2013). hlyA gene-based sensitive detection of Listeria monocytogenes using a novel cantilever sensor. Analytical Chemistry, 85(6), 3222–3228. doi: 10.1021/ac303561c
  • Shi, L., Wu, F., Wen, Y. M., Zhao, F., Xiang, J. J., & Ma, L. (2015). A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay. Analytical and Bioanalytical Chemistry, 407(2), 529–535. doi: 10.1007/s00216-014-8276-8
  • Shim, W. B., Choi, J. G., Kim, J. Y., Yang, Z. Y., Lee, K. H., Kim, M. G., … Chung, D. H. (2007). Production of monoclonal antibody against Listeria monocytogenes and its application to immunochromatography strip test. Journal of Microbiology and Biotechnology, 17(7), 1152–1161.
  • Shim, W. B., Choi, J. G., Kim, J. Y., Yang, Z. Y., Lee, K. H., Kim, M. G., … Chung, D. H. (2008). Enhanced rapidity for qualitative detection of Listerial monocytogenes using an enzyme-linked lmmunosorbent assay and immuniochromatography strip test combined with immunomagnetic bead separation. Journal of Food Protection, 71(4), 781–789. doi: 10.4315/0362-028X-71.4.781
  • Stambach, N. R., Carr, S. A., Cox, C. R., & Voorhees, K. J. (2015). Rapid detection of Listeria by bacteriophage amplification and SERS-lateral flow immunochromatography. Viruses-Basel, 7(12), 6631–6641. doi: 10.3390/v7122962
  • Suh, S. H., & Jaykus, L. A. (2013). Nucleic acid aptamers for capture and detection of Listeria spp. Journal of Biotechnology, 167(4), 454–461. doi: 10.1016/j.jbiotec.2013.07.027
  • Valimaa, A. L., Tilsala-Timisjarvi, A., & Virtanen, E. (2015). Rapid detection and identification methods for Listeria monocytogenes in the food chain – A review. Food Control, 55, 103–114. doi: 10.1016/j.foodcont.2015.02.037
  • Wang, W. B., Feng, M., Kong, D. Z., Liu, L. Q., Song, S. S., & Xu, C. L. (2015). Development of an immunochromatographic strip for the rapid detection of pseudomonas syringae pv. Maculicola in broccoli and radish seeds. Food and Agricultural Immunology, 26(5), 738–745. doi: 10.1080/09540105.2015.1023266
  • Wang, W. B., Liu, L. Q., Song, S. S., Tang, L. J., Kuang, H., & Xu, C. L. (2015). A highly sensitive ELISA and immunochromatographic strip for the detection of Salmonella typhimurium in milk samples. Sensors, 15(3), 5281–5292. doi: 10.3390/s150305281
  • Wang, W., Liu, L., Song, S., Xu, L., Kuang, H., Zhu, J., & Xu, C. (2016). Gold nanoparticle-based strip sensor for multiple detection of twelve salmonella strains with a genus-specific lipopolysaccharide antibody. Science China Materials, 59(8), 665–674. doi: 10.1007/s40843-016-5077-0
  • Wang, W., Liu, L., Xu, L., Kuang, H., Zhu, J., & Xu, C. (2016). Gold-nanoparticle-based multiplexed immunochromatographic strip for simultaneous detection of staphylococcal enterotoxin A, B, C, D, and E. Particle & Particle Systems Characterization, 33(7), 388–395. doi: 10.1002/ppsc.201500219
  • Wang, Y., Wang, Y., Ma, A. J., Li, D. X., Luo, L. J., Liu, D. X., … Ye, C. Y. (2015). The novel multiple inner primers-loop-mediated isothermal amplification (MIP-LAMP) for rapid detection and differentiation of Listeria monocytogenes. Molecules, 20(12), 21515–21531. doi: 10.3390/molecules201219787
  • Wang, Z., Zong, S., Chen, H., Wang, C., Xu, S., & Cui, Y. (2014). SERS-Fluorescence Joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation. Advanced Healthcare Materials, 3(11), 1889–1897. doi: 10.1002/adhm.201400092
  • Wu, X., Chen, X., Gao, F., Ma, W., Xu, L., Kuang, H., … Xu, C. (2016). SERS encoded nanoparticle heterodimers for the ultrasensitive detection of folic acid. Biosensors and Bioelectronics, 75, 55–58. doi: 10.1016/j.bios.2015.08.009
  • Wu, X., Wang, W., Liu, L., Kuang, H., & Xu, C. (2015). Monoclonal antibody-based cross-reactive sandwich ELISA for the detection of Salmonella spp. in milk samples. Analytical Methods, 7(21), 9047–9053. doi: 10.1039/C5AY01923K
  • Yu, K.-Y., Noh, Y., Chung, M., Park, H.-J., Lee, N., Youn, M., … Youn, B.-S. (2004). Use of monoclonal antibodies that recognize p60 for identification of Listeria monocytogenes. Clinical and Diagnostic Laboratory Immunology, 11(3), 446–451.
  • Zhang, J., Kruss, S., Hilmer, A. J., Shimizu, S., Schmois, Z., De La Cruz, F.,  … Strano, M. S. (2014). A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin T using near-infrared fluorescent single-walled carbon nanotube sensors. Advanced Healthcare Materials, 3(3), 412–423. doi: 10.1002/adhm.201300033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.