2,288
Views
9
CrossRef citations to date
0
Altmetric
Articles

Production and characterization of a single-chain Fv antibody–alkaline phosphatase fusion protein specific for ampicillin

, , , , &
Pages 1-12 | Received 09 Jul 2018, Accepted 02 Oct 2018, Published online: 19 Nov 2018

References

  • Byzova, N. A., Zvereva, E. A., Zherdev, A. V., & Dzantiev, B. B. (2011). Immunochromatographic technique for express determination of ampicillin in milk and dairy products. Applied Biochemistry and Microbiology, 47, 685–693. doi.org/10.1134/S0003683811060032
  • Cliquet, p., Goddeeris, B. M., Okerman, L., & Cox, E. (2007). Production of penicillin-specific polyclonal antibodies for a group-specific screening ELISA. Food and Agricultural Immunology, 18, 237–252. doi.org/10.1080/09540100701802908
  • Dong, J. X., Li, Z. F., Lei, H. T., Sun, Y. M., Ducancel, F., Xu, Z. L., & Wang, H. (2012). Development of a single-chain variable fragment-alkaline phosphatase fusion protein and a sensitive direct competitive chemiluminescent enzyme immunoassay for detection of ractopamine in pork. Analytica Chimica Acta, 736, 85–91. doi.org/10.1016/j.aca.2012.05.033
  • Fields, C., O’Connell, D., Xiao, S., Lee, G. U., Billiald, P., & Muzard, J. (2013). Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nature Protocols, 8, 1125–1148. doi.org/10.1038/nprot.2013.057
  • Hamamoto, K. K., & Mizuno, Y. (2015). LC-MS/MS measurement of ampicillin residue in swine tissues at 5 days after in-feed administration. Journal of Veterinary Medical Science, 77, 1527–1529. doi.org/10.1292/jvms.14-0367
  • Hasegawa, K., Yamamoto, K., Chiba, N., Kobayashi, R., Nagai, K., & Jacobs, M. R. (2003). Diversity of ampicillin-resistance genes in Haemophilus influenzae in Japan and the United States. Microbial Drug Resistance, 9, 39–46. doi.org/10.1089/107662903764736337
  • He, X., Duan, C. F., Qi, R. H., Dong, J., Wang, G. N., Zhao, G. X., … Liu, J. (2017). Virtual mutation and directional evolution of anti-amoxicillin ScFv antibody for immunoassay of penicillins in milk. Analytical Biochemistry, 517, 9–17. doi.org/10.1016/j.ab.2016.10.020
  • He, K., Zhang, X. Y., Du, X. J., & Wei, D. (2016a). Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding. Analytical Biochemistry, 503, 21–27. doi.org/10.1016/j.ab.2015.12.020
  • He, K., Zhang, X. Y., Zhao, R. P., Wang, L. X., Feng, T. T., & Wei, D. (2016b). An enzyme-linked immunosorbent assay and a gold-nanoparticle based immunochromatographic test for amatoxins using recombinant antibody. Microchimica Acta, 183, 2211–2219. doi.org/10.1007/s00604-016-1856-x
  • Hu, K., Huang, X. Y., Jiang, Y. S., Fang, W., & Yang, X. L. (2010). Monoclonal antibody based enzyme-linked immunosorbent assay for the specific detection of ciprofloxacin and enrofloxacin residues in fishery products. Aquaculture, 310, 8–12. doi.org/10.1016/j.aquaculture.2010.08.008
  • Khan, A. A. P., Mohd, A., Bano, S., Siddiqi, K. S., & Asiri, A. M. (2015). Spectrophotometric methods for the determination of ampicillin by potassium permanganate and 1-chloro-2,4-dinitrobenzene in pharmaceutical preparations. Arabian Journal Chemistry, 8, 255–263. doi.org/10.1016/j.arabjc.2012.04.033
  • Lauback, R. G., Rice, J. J., Bleiberg, B., Muhammad, N., & Hanna, S. A. (2006). Specific high-performance liquid chromatographic determination of ampicillin in bulks, injectables, capsules, and oral suspensions by reverse-phase ion-pair chromatography. Food and Agricultural Immunology, 7, 1243–1265. doi.org/10.1080/01483918408074041
  • Li, Q. M., Liu, Q. T., Wang, Y. B., Chai, S. J., & Zhang, G. P. (2011). Anti-ampicillin monoclonal antibodies and their cross-reactivity to penicillin antibiotics. Acta Agriculturae Boreali-Sinica, 26, 60–63. http://www.hbnxb.net/EN/article/searchArticle.do
  • Liu, Y. Z., Zhao, G. X., & Wang, P. (2013). Production of the broad specific monoclonal antibody against sarafloxacin for rapid immunoscreening of 12 fluoroquinolones in meat. Journal of Environmental Science and Health, 48, 139–146. doi.org/10.1080/03601234.2013.727668
  • Ma, L. P., Zhao, J. F., Qiu, Z. J., Qin, C. L., & Yang, M. L. (2013). Synthesis of ampicillin complete antigen and the preliminary optimization of indirect competitive ELISA conditions. Animal Husbandry and Feed Science, 34, 10–13. http://www.doc88.com/p-6901156224273.html
  • Maragos, C. M., Li, L., & Chen, D. H. (2012). Production and characterization of a single chain variable fragment (scFv) against the mycotoxin deoxynivalenol. Food and Agricultural Immunology, 23, 51–67. doi.org/10.1080/09540105.2011.598921
  • Ossysek, K., Uchański, T., Kulesza, M., Bzowska, M., & Klaus, T. (2015). A new expression vector facilitating production and functional analysis of scfv antibody fragments selected from tomlinson I+J phagemid libraries. Immunol.Lett, 167, 95–102. doi.org/10.1016/j.imlet.2015.07.005
  • Peng, J., Cheng, G., Li, H., Wang, Y., Hao, H., Peng, D., … Yuan, Z. (2013). Development of a direct ELISA based on carboxy-terminal of penicillin-binding protein BlaR for the detection of β-lactam antibiotics in foods. Analytical and Bioanalytical Chemistry, 405, 8925–8933. doi.org/10.1007/s00216-013-7311-5
  • Shi, L., Cheng, H., Yan, J. H., Wu, M., & Liu, J. Z. (2014). Synthesis of ampicillin artificial antigen and preparation of anti-ampicillin monoclonal antibodies. Animal Husbandry & Veterinary Medicine, 46, 15–18. https://wenku.baidu.com/view/d8c98f49376baf1ffc4fad73.html
  • Sun, L. R., Jia, L. F., Xie, X., Xie, K. Z., Wang, J. F., Liu, J. Y., & Wang, J. Y. (2016). Quantitative analysis of amoxicillin, its major metabolites and ampicillin in eggs by liquid chromatography combined with electrospray ionization tandem mass spectrometry. Food Chemistry, 192, 313–318. doi.org/10.1016/j.foodchem.2015.07.028
  • Sun, W. Y., Liu, W. Y., & Qu, L. B. (2017). Development of ELISA and immunochromatographic assay for ofloxacin. Chinese Chemical Letters, 18, 1107–1110. doi: 10.1016/j.cclet.2007.07.008
  • TolhurstA, T. A., Negrusz, A., Libelt, B., Woods, E. F., & Levine, B. S. (1996). Determination of ampicillin in New Zealand white rabbit plasma using column switching technique and HPLC. Chromatographia, 42, 223–226. doi.org/10.1007/BF02269657
  • Ubukata, K., Shibasaki, Y., Yamamoto, K., Chiba, N., Hasegawa, K., & Takeuchi, Y. (2001). Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in betalactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 45, 1693–1699. doi.org/10.1128/AAC.00960-06 doi: 10.1128/AAC.45.6.1693-1699.2001
  • Wang, B., Pang, M., Xie, X., Zhao, M., & Xie, K. (2017a). Quantitative analysis of amoxicillin, amoxicillin major metabolites, and ampicillin in chicken tissues via ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Food Analytical Methods, 10, 3292–3305. doi.org/10.1007/s12161-017-0900-8
  • Wang, D. D., Yue, Y. H., Wu, G. M., Tian, Y., Liu, Y. L., Yu, J., … Zhang, G. L. (2017b). Preparation and characterization of a human scFv against the Clostridium perfringens type A alpha-toxin. Toxicon, 130, 79–86. doi.org/10.1016/j.toxicon.2017.02.021
  • Wang, Z. H., Zhang, H. Y., Ni, H. J., Zhang, S. X., & Shen, J. Z. (2014). Development of a highly sensitive and specific immunoassay for enrofloxacin based on heterologous coating haptens. Anal.Chim.Acta, 820, 152–158. doi.org/10.1016/j.aca.2014.02.043
  • Zhang, X. Y., He, K., Zhao, R. P., Wang, L. X., & Jin, Y. D. (2016). Cloning of scFv from hybridomas using a rational strategy: Application as a receptor to sensitive detection microcystin-LR in water. Chemosphere, 160, 230–236. doi: 10.1016/j.chemosphere.2016.06.084