2,403
Views
17
CrossRef citations to date
0
Altmetric
Articles

Development of a noncompetitive idiometric nanobodies phage immumoassay for the determination of fumonisin B1

, , , , , & show all
Pages 510-521 | Received 21 Feb 2019, Accepted 03 Apr 2019, Published online: 20 Apr 2019

References

  • Akter, S., Vehniäinen, M., Kankaanpää, H. T., & Lamminmäki, U. (2017). Rapid and highly sensitive non-competitive immunoassay for specific detection of nodularin. Microorganisms, 5, 58. doi: 10.3390/microorganisms5030058
  • Barbas, C. F., Burton, D. R., Scott, J. K., & Silverman, G. J. (2001). Phage display: A laboratory manual. NY: Cold Spring Harbor Laboratory Press.
  • Carlomagno, M., Lassabe, G., Rossotti, M., Gonzáleztechera, A., Vanrell, L., & Gonzálezsapienza, G. (2014). Recombinant streptavidin nanopeptamer anti-immunocomplex assay for noncompetitive detection of small analytes. Analytical Chemistry, 86, 10467–10473. doi: 10.1021/ac503130v
  • Chung, C. I., Makino, R., Dong, J., & Ueda, H. (2015). Open flower fluoroimmunoassay: A general method to make fluorescent protein-based immunosensor probes. Analytical Chemistry, 87, 3513–3519. doi: 10.1021/acs.analchem.5b00088
  • del Rio, B., Redruello, B., Fernandez, M., Martin, M. C., Ladero, V., & Alvarez, M. A. (2019). Lactic acid bacteria as a live delivery system for the in situ production of nanobodies in the human gastrointestinal tract. Frontiers in Microbiology, 9, 3179. doi: 10.3389/fmicb.2018.03179
  • Dong, J. X., Xu, C., Wang, H., Xiao, Z. L., Gee, S. J., Li, Z. F., … Yang, J. Y. (2014). Enhanced sensitive immunoassay: Noncompetitive phage anti-immune complex assay for the determination of malachite green and leucomalachite green. Journal of Agricultural and Food Chemistry, 62, 8752–8758. doi: 10.1021/jf5019824
  • Faraji, F., Tajik, N., Behdani, M., Shokrgozar, M. A., Zarnani, A. H., Shahhosseini, F., & Habibi-Anbouhi, M. (2018). Development and characterization of a camelid single-domain antibody directed to human CD22 biomarker. Biotechnology and Applied Biochemistry, 65(5), 718–725. doi: 10.1002/bab.1654
  • González-Techera, A., Vanrell, L., Last, J. A., Hammock, B. D., & González-Sapienza, G. (2007). Phage anti-immune complex assay: General strategy for noncompetitive immunodetection of small molecules. Analytical Chemistry, 79(20), 7799–7806. doi: 10.1021/ac071323h
  • Gujral, N., Yoo, H., Bamdad, F., Suh, J.-W., & Sunwoo, H. (2017). Sensitive double antibody sandwich ELISA for the quantification of phosvitin. Food and Agricultural Immunology, 28, 834–847. doi: 10.1080/09540105.2017.1313821
  • Haasnoot, W., & Verheijen, R. (2001). A direct (non-competitive) immunoassay for gentamicin residues with an optical biosensor. Food and Agricultural Immunology, 13, 131–134. doi: 10.1080/09540100120055701
  • Hamerscasterman, C. (1993). Naturally occurring antibodies devoid of light chains. Nature, 363, 446–448. doi: 10.1038/363446a0
  • Jerne, N. K. (1974). Towards a network theory of the immune system. Annales Dimmunologie, 125C, 373.
  • Lan, H., Hong, P., Li, R., Suo, L., Shan, A., Li, S., & Zheng, X. (2017). Internal image anti-idiotypic antibody: A new strategy for the development a new category of prolactin receptor (PRLR) antagonist. Molecular Immunology, 87, 86–93. doi: 10.1016/j.molimm.2017.04.006
  • Li, S., Wu, X., Song, S., Zheng, Q., & Kuang, H. (2019). Development of ic-ELISA and an immunochromatographic strip assay for the detection of aristolochic acid I. Food and Agricultural Immunology, 30, 140–149. doi: 10.1080/09540105.2018.1551331
  • Li, Y., Zhang, G., Xin, M., Yang, S., De Ruyck, K. D., & Wu, Y. (2018). High sensitivity immunoassays for small molecule compounds detection – novel noncompetitive immunoassay designs. Trac Trends in Analytical Chemistry, 103, 198–208. doi: 10.1016/j.trac.2018.04.008
  • Liu, Y., Lin, M., Wu, J., Hu, X., Zhang, X., Xu, C., … Liu, X. (2018). Generation of panels of anti-idiotypic single-chain variable fragments mimicking Cry2Aa toxin using the chain shuffling technique. Food and Agricultural Immunology, 29, 735–743. doi: 10.1080/09540105.2018.1440535
  • Niwa, T., Kobayashi, T., Pi, S., Goto, J., Oyama, H., & Kobayashi, N. (2009). An enzyme-linked immunometric assay for cortisol based on idiotype–anti-idiotype reactions. Analytica Chimica Acta, 638, 94–100. doi: 10.1016/j.aca.2009.02.010
  • Omi, K., Ando, T., Sakyu, T., Shirakawa, T., Uchida, Y., Oka, A., … Goishi, K. (2015). Noncompetitive immunoassay detection system for haptens on the basis of antimetatype antibodies. Clinical Chemistry, 61, 627–635. doi: 10.1373/clinchem.2014.232728
  • Qiu, Y. L., Li, P., Dong, S., Zhang, X., Yang, Q., Wang, Y., … Liu, X. (2018). Phage-mediated competitive chemiluminescent immunoassay for detecting Cry1Ab toxin by using an anti-idiotypic camel nanobody. Journal of Agricultural and Food Chemistry, 66, 950–956. doi: 10.1021/acs.jafc.7b04923
  • Saha, D., Roy, D., & Dhar, T. K. (2013). Immunofiltration assay for aflatoxin B1 based on the separation of pre-immune complexes. Journal of Immunological Methods, 392, 24–28. doi: 10.1016/j.jim.2013.03.003
  • Shu, M., Xu, Y., Liu, X., Li, Y., He, Q., Tu, Z., … Hammock, B. D. (2016). Anti-idiotypic nanobody-alkaline phosphatase fusion proteins: Development of a one-step competitive enzyme immunoassay for fumonisin B1 detection in cereal. Analytica Chimica Acta, 924, 53–59. doi: 10.1016/j.aca.2016.03.053
  • Shu, M., Xu, Y., Wang, D., Liu, X., Li, Y., He, Q., … Wang, X. (2015). Anti-idiotypic nanobody: A strategy for development of sensitive and green immunoassay for fumonisin B₁. Talanta, 143, 388–393. doi: 10.1016/j.talanta.2015.05.010
  • Suryoprabowo, S., Liu, L., Kuang, H., Xu, L., Ma, W., & Wu, X. (2019). Development of monoclonal antibody-based colloidal gold immunochromatographic assay for analysis of halofuginone in milk. Food and Agricultural Immunology, 30, 112–122. doi: 10.1080/09540105.2018.1550058
  • Tsutsumi, T., Nagata, S., Yoshida, F., Harada, K. I., & Ueno, Y. (2000). Development and application of highly sensitive anti-immune complex ELISAs for microcystins in tap water. Food and Agricultural Immunology, 12, 231–241. doi: 10.1080/09540100050140768
  • Tu, Z., Xu, Y., He, Q., Fu, J., Liu, X., & Tao, Y. (2012). Isolation and characterisation of deoxynivalenol affinity binders from a phage display library based on single-domain camelid heavy chain antibodies (VHHs). Food and Agricultural Immunology, 23, 123–131. doi: 10.1080/09540105.2011.606560